Relations Between Diffusivities, $D_{A B}, D_{B A}$

$>$ is easily determined by ideal gases, since the molar density does not depend on the composition:

$$
\begin{equation*}
\mathrm{c}_{\mathrm{A}}+\mathrm{c}_{\mathrm{B}}=\rho_{\mathrm{M}}=\frac{\mathrm{P}}{\mathrm{RT}} \tag{8}
\end{equation*}
$$

For diffusion of \boldsymbol{A} and B in a gas at constant temperature and pressure,

$$
\begin{equation*}
\mathrm{dc}_{\mathrm{A}}+\mathrm{dc}_{\mathrm{B}}=\mathrm{d} \rho_{\mathrm{M}}=0 \tag{9}
\end{equation*}
$$

Choosing the reference plane for which there is zero volume flow, we can set the sum of the molar diffusion fluxes of A and B to zero, since the molar volumes are the same:

$$
\begin{gather*}
J_{A}+J_{B}=0 \\
-D_{A B} \frac{d c_{A}}{d z}-D_{B A} \frac{d c_{B}}{d z}=0 \tag{11}
\end{gather*}
$$

$$
\ldots . .(10)
$$

Since $d_{A}=-d C_{B}$, the diffusivities must be equal, that is,

$$
\begin{equation*}
D_{A B}=D_{B A} \tag{12}
\end{equation*}
$$

> If we are dealing with liquids, the same results is found if all mixtures of A and B have the same mass density

$$
\begin{align*}
& \mathrm{c}_{\mathrm{A}} \mathrm{M}_{\mathrm{A}}+\mathrm{c}_{\mathrm{B}} \mathrm{M}_{\mathrm{B}}=\rho \tag{13}\\
& \mathrm{M}_{\mathrm{A}} \mathrm{dc}_{\mathrm{A}}+\mathrm{M}_{\mathrm{B}} \mathrm{dc}_{\mathrm{B}}=0 \tag{14}
\end{align*}
$$

For no volume flow across the reference plane, the sum of the volumetric flows due to diffusion is zero. The volumetric flow is the molar flow times the molar volume M/ ρ and

$$
\begin{equation*}
-D_{A B} \frac{\mathrm{dc}_{\mathrm{A}}}{\mathrm{dz}}\left(\frac{\mathrm{M}_{\mathrm{A}}}{\rho}\right)-\mathrm{D}_{\mathrm{BA}} \frac{\mathrm{dc}_{\mathrm{B}}}{\mathrm{dz}}\left(\frac{\mathrm{M}_{\mathrm{B}}}{\rho}\right)=0 \tag{15}
\end{equation*}
$$

Since $M_{A} d c_{A}=-M_{B} d c_{B}$, again the diffusivities must be equal, thus,

$$
\begin{equation*}
\mathrm{D}_{\mathrm{AB}}=\mathrm{D}_{\mathrm{BA}} \tag{16}
\end{equation*}
$$

General Case for Diffusion of Gases A and B Plus Convection

> Up to now we have considered Fick's law for diffusion in a stationary fluid; that is, there has been no net movement or convective flow of the entire phases of the binary mixture A and B.
> The diffusion flux J_{A} occurred because of the concentration gradient.
> The rate at which moles A passed a fixed point to the right, which will be taken as positive flux, is $J_{A} \mathrm{~kg} \mathrm{~mol}$ A/s. \mathbf{m}^{2}.
$>$ This flux can be converted to a velocity of diffusion of A to the right by

$$
\begin{equation*}
\mathrm{J}_{\mathrm{A}}\left(k g \text { mole } \mathrm{A} / m^{2} \cdot s\right)=v_{\mathrm{Ad}} \mathrm{c}_{\mathrm{A}}\left(\frac{m}{s} \frac{k g \text { mole } A}{m^{3}}\right) \tag{17}
\end{equation*}
$$

where v_{Ad} is the diffusion velocity of \boldsymbol{A} in m / s.
$>$ Now let us consider what happens when the whole fluid is moving in bulk or convective flow to the right. The molar average velocity of the whole fluid relative to a stationary point is $v_{\mathrm{M}} \mathrm{m} / \mathbf{s}$.
> Component A is still diffusing to the right, but now its velocity v_{Ad} is measured relative to the moving fluid.
> To a stationary observer, \boldsymbol{A} is moving faster than the bulk of the phase, since its diffusion velocity v_{Ad} is added to that of the bulk phase v_{M}.

$>$ Expressed mathematically, the velocity of A relative to the stationary point is the sum of the diffusion velocity and the average or convective velocity

$$
\begin{equation*}
v_{\mathrm{A}}=v_{\mathrm{Ad}}+v_{\mathrm{M}} \tag{18}
\end{equation*}
$$

Multiplying the above equation by c_{A}.

$$
\begin{equation*}
c_{A} v_{\mathrm{A}}=c_{A} v_{\mathrm{Ad}}+c_{A} v_{\mathrm{M}} \tag{19}
\end{equation*}
$$

> Each of the three terms represents a flux.
> The first term, $c_{A} v_{\mathrm{A}}$ can be represented by the flux $N_{A}\left(\mathrm{~kg} \mathrm{~mol} \mathrm{~A} / \mathrm{m}^{2} . \mathrm{s}\right)$.
$>$ The second term is J_{A}, the diffusion flux relative to the moving fluid.
$>$ The third term is the convective flux of A relative to the stationary point. Hence

$$
\begin{equation*}
N_{\mathrm{A}}=J_{A}+c_{A} v_{\mathrm{M}} \tag{20}
\end{equation*}
$$

$>$ Let N be the total convective flux of the whole stream relative to the stationary point. Then

$$
\begin{equation*}
N=c v_{\mathrm{M}}=N_{A}+N_{B} \tag{21}
\end{equation*}
$$

Or, solving for v_{M}

$$
\begin{equation*}
v_{\mathrm{M}}=\frac{N_{A}+N_{B}}{c} \tag{22}
\end{equation*}
$$

Thus, substitute Eq. (22) into Eq. (20)

$$
\begin{equation*}
N_{\mathrm{A}}=J_{A}+\frac{c_{A}}{c}\left(N_{A}+N_{B}\right) \tag{23}
\end{equation*}
$$

Since J_{A} is the Fick's law, then

$$
\begin{equation*}
N_{\mathrm{A}}=-c D_{A B} \frac{\mathrm{~d} x_{A}}{\mathrm{~d} z}+\frac{c_{A}}{c}\left(N_{A}+N_{B}\right) \tag{24}
\end{equation*}
$$

$>$ Equation above is the final general equation for diffusion plus convection to use when the flux N_{A} is used, which is relative to a stationary point.
$>$ A similar equation can be written for N_{B}.

$$
\begin{equation*}
N_{\mathrm{B}}=-c D_{B A} \frac{\mathrm{~d} x_{B}}{\mathrm{~d} z}+\frac{c_{B}}{c}\left(N_{A}+N_{B}\right) \tag{25}
\end{equation*}
$$

$>$ To solve the above two equations, the relation between the flux N_{A} and N_{B} must be known. The equations hold for diffusion in a gas, liquid or solid.
$>$ For equimolar counterdiffusion, $N_{A}=-N_{B}$ and the convective term become zero. Then

$$
\begin{equation*}
N_{A}=J_{A}=-N_{B}=-J_{B} \tag{26}
\end{equation*}
$$

The above equations can also be used in different forms. For example, since $N=c v_{M}$ and $c x_{A}=c_{A},\left(c x_{B}=c_{B}\right)$ thus from Eq. (20):

$$
\begin{align*}
& N_{A}=c_{A} v_{M}-D_{A B} \frac{d c_{A}}{d z} \tag{27}\\
& N_{B}=c_{B} v_{M}-D_{B A} \frac{d c_{B}}{d z} \tag{28}
\end{align*}
$$

Therefore, the appropriate equation used to solve a problem would entirely depends on the information given in the problem.

Those equations are the basic equations for mass transfer in a non-turbulent fluid phase. It accounts for the amount of component A carried by the convective bulk flow of the fluid and the amount of A being transferred by molecular diffusion.

There are two types of situation will be discussed in the syllabus:

1) Equimolar counterdiffusion
2) Unimolecular diffusion (diffusion of a single component through stationary second component).

Equimolar Counterdiffusion

In

 equimolar counterdiffusion, the molar fluxes of A and B are equal, but in opposite direction or the net volumetric and molar flows are zero.A typical example of this case is the diffusion of A and B in the vapor phase for distillation that have constant molar overflow.

Figure 11 Equimolar counterdiffusion of gases A and B.

$$
\begin{aligned}
& p_{A 1}>p_{A 2} ; \\
& P_{B 2}>P_{B 1}
\end{aligned}
$$

> Since the net volumetric and molar flows are zero, thus Eq. (24) can be used with the convective term is set to zero, as shown below:

$$
\begin{equation*}
J_{A}=-c D_{A B} \frac{d x_{A}}{d z} \tag{29}
\end{equation*}
$$

$>$ Eq. (29) is then integrated over a film thickness of z_{T}, assuming a constant flux, J_{A} :

$$
\begin{equation*}
-D_{A B} c \int_{x_{A i}}^{x_{A}} d x_{A}=J_{A} \int_{0}^{z_{T}} d z \tag{30}
\end{equation*}
$$

> Integrating Eq. (30) and rearranging gives:

$$
\begin{equation*}
J_{A}=\frac{D_{A B} c}{z_{T}}\left(x_{A i}-x_{A}\right) \text { or } J_{A}=\frac{D_{A B}}{z_{T}}\left(c_{A i}-c_{A}\right) \tag{31}
\end{equation*}
$$

The concentration gradient for \boldsymbol{A} is linear in the film, and the gradient for B has the same magnitude but the opposite sign.
$>$ Molecular of \boldsymbol{A} diffuse to the right and B to the left.
$>$ Since the total pressure P is constant throughout, the net moles of A diffusing to the right must equal the net moles of B to the left.
$>$ If this is not so, the total pressure would not remain constant. This means that

$$
\begin{equation*}
J_{A}=-J_{B} \tag{32}
\end{equation*}
$$

> Writing Fick's law for \boldsymbol{B} for constant \mathbf{c},

$$
\begin{equation*}
J_{B}=-D_{B A} \frac{d c_{B}}{d z} \tag{33}
\end{equation*}
$$

Now since $P=p_{A}+p_{B}=$ constant, then

$$
\begin{equation*}
c=c_{A}+c_{B} \tag{34}
\end{equation*}
$$

Differentiating both sides,

$$
\begin{equation*}
d c_{A}=-d c_{B} \tag{35}
\end{equation*}
$$

Thus,
$J_{A}=-D_{A B} \frac{d c_{A}}{d z}=-c D_{A B} \frac{d x_{A}}{d z}=-J_{B}=-(-) D_{B A} \frac{d c_{B}}{d z}=-(-) c D_{B A} \frac{d x_{B}}{d z} \ldots .$. (36)
Substituting and canceling like terms,

$$
\begin{equation*}
D_{A B}=D_{B A} \tag{37}
\end{equation*}
$$

$>$ For a binary gas mixture of A and B, the diffusivity coefficient $D_{A B}$ for A diffusing into B is the same as $D_{B A}$ for B diffusing into A.

Example:

Ammonia gas (A) is diffusing through a uniform tube 0.10 m long containing $\mathrm{N}_{2} \operatorname{gas}(B)$ at $1.0132 \times 10^{5} \mathrm{~Pa}$ pressure and 298 K . At a point 1 , $p_{A 1}=1.013 \times 10^{4} \mathrm{~Pa}$ and at a point $2, p_{\mathrm{A} 2}=0.507 \times 10^{4} \mathrm{~Pa}$. The diffusivity $D_{A B}=0.230 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$. Calculate the flux J_{A} at steady state and repeat for J_{B}.

Solution:

Given: $P=1.0132 \times 10^{5} \mathrm{~Pa} \quad T=298 \mathrm{~K}$

$$
z_{2}-z_{1}=0.10 \mathrm{~m}
$$

Substitute known values into the following equation:

$$
J_{A}=\frac{D_{A B}\left(p_{A 1}-p_{A 2}\right)}{R T\left(z_{2}-z_{1}\right)}
$$

$$
\begin{aligned}
J_{A} & =\frac{D_{A B}\left(p_{A I}-p_{A 2}\right)}{R T\left(z_{2}-z_{1}\right)}=\frac{\left(0.23 \times 10^{-4}\right)\left(\frac{\mathrm{m}^{2}}{\mathrm{~s}}\right)\left(1.013 \times 10^{4}-0.507 \times 10^{4}\right)(\mathrm{Pa})}{8314\left(\frac{\mathrm{~m}^{3} \cdot \mathrm{~Pa}}{\mathrm{~kg} \mathrm{~mol} \cdot \mathrm{~K}}\right)(298)(\mathrm{K})(0.10-0)(\mathrm{m})} \\
& =4.70 \times 10^{-7}\left(\frac{\mathrm{~kg} \mathrm{molA}}{\mathrm{~s} \cdot \mathrm{~m}^{2}}\right)
\end{aligned}
$$

For component B:

$$
\begin{aligned}
& p_{B 1}=P-p_{A 1}=1.0132 \times 10^{5}-1.013 \times 10^{4}=9.119 \times 10^{4} \mathrm{~Pa} \\
& p_{B 2}=P-p_{A 2}=1.0132 \times 10^{5}-0.507 \times 10^{4}=9.625 \times 10^{4} \mathrm{~Pa}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
J_{B} & =\frac{D_{B A}\left(p_{B I}-p_{B 2}\right)}{R T\left(z_{2}-z_{1}\right)}=\frac{\left(0.23 \times 10^{-4}\right)\left(\frac{\mathrm{m}^{2}}{\mathrm{~s}}\right)\left(9.119 \times 10^{4}-9.625 \times 10^{4}\right)(\mathrm{Pa})}{8314\left(\frac{\mathrm{~m}^{3} \cdot \mathrm{~Pa}}{\mathrm{~kg} \mathrm{~mol} \cdot \mathrm{~K}}\right)(298)(\mathrm{K})(0.10-0)(\mathrm{m})} \\
& =-4.70 \times 10^{-7}\left(\frac{\mathrm{~kg} \mathrm{molB}}{\mathrm{~s} \cdot \mathrm{~m}^{2}}\right)
\end{aligned}
$$

$>$ The negative value for J_{B} means the flux goes from point 2 to point 1.

Unimolecular Diffusion

In unimolecular diffusion, mass transfer of component A occurs through stagnant component $B, N_{B}=0$.

Therefore, the total flux to or away from the interface, N is the same as $\boldsymbol{N}_{\boldsymbol{A}}$.

Special Case for A Diffusing Through Stagnant, Nondiffusing B

> In this case one boundary at the end of the diffusion path is impermeable to component B, so it cannot pass through.

