Relations Between Diffusivities, D,g, Dga

» Is easily determined by ideal gases, since the molar
density does not depend on the composition:

P
CA—|—CB:pM:ﬁ -----(8)
For diffusion of A and B in a gas at constant temperature

and pressure,
dc, +dc, =dp,, =0 ceeee(9)

Choosing the reference plane for which there is zero
volume flow, we can set the sum of the molar diffusion
fluxes of A and B to zero, since the molar volumes are the

Same.



J,+J, =0 en(10)

de, _

ac, _p —0 n(11)

_D.. A ~B
AB dZ BA dZ

Since dC,=-dCg, the diffusivities must be equal, that is,

Dy =D e (12)



» If we are dealing with liquids, the same results is
found if all mixtures of A and B have the same mass

density 13
c,M, +c .M, =p ceena(13)

M dc, + Mdc, =0 ..on(14)

For no volume flow across the reference plane, the sum
of the volumetric flows due to diffusion is zero. The
volumetric flow is the molar flow times the molar volume

M/p and
p, LaMa) p %o (M) (45
dz \ p dz \ p

Since M,dc,=-Mzdcg, again the diffusivities must be equal,
thus,

D,z =Dga e-e(16)
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General Case for Diffusion of Gases A
and B Plus Convection

» Up to now we have considered Fick’s law for diffusion
In a stationary fluid; that is, there has been no net
movement or convective flow of the entire phases of
the binary mixture A and B.

» The diffusion flux J, occurred because of the
concentration gradient.

» The rate at which moles A passed a fixed point to the
right, which will be taken as positive flux, is J, kg mol
Als-m? .



» This flux can be converted to a velocity of diffusion of
A to the right by

J, (kg mole A/m?-s)=v,,C, (r: kg %ZIEAJ en(17)

where U, is the diffusion velocity of A in m/s.

» Now let us consider what happens when the whole
fluid is moving in bulk or convective flow to the right.
The molar average velocity of the whole fluid relative
to a stationary pointis v,, m/s.

» Component A is still diffusing to the right, but now its
velocity v, IS measured relative to the moving fluid.



» To astationary observer, A is moving faster than the
bulk of the phase, since its diffusion velocity v, Is
added to that of the bulk phase v, .

» Expressed mathematically, the velocity of A relative to
the stationary point is the sum of the diffusion velocity
and the average or convective velocity

Up = Upg T Uy, oe.ra(18)



Multiplying the above equation by c,.

>

>

CaUa =CpUpg TCAU\ ..--(19)
Each of the three terms represents a flux.

The first term, C,U, can be represented by the flux
N, (kg mol A/m=2.s).

The second term is J,, the diffusion flux relative to
the moving fluid.

The third term is the convective flux of A relative to
the stationary point. Hence

N, =J,+C0, ....(20)



> Let N be the total convective flux of the whole stream
relative to the stationary point. Then

N =cu,, =N, + N, eene(21)

Or, solving for p,,

D, = NA:NB .en(22)

Thus, substitute Eg. (22) into Eqg. (20)

NA :JA+%(NA+NB) eeea(23)

Since J, is the Fick’s law, then

dx, cC,
N,=-cD,, —2>+-2(N,+N .ena(24)
AB dZ C ( )



» Equation above is the final general equation for
diffusion plus convection to use when the flux N, is
used, which is relative to a stationary point.

» A similar equation can be written for Ng.

dx; Cg
N, =—cD — B4+ B(N,+N cvenn(25)
BA dZ C ( )

» To solve the above two equations, the relation between
the flux N, and Ng must be known. The equations hold
for diffusion in a gas, liquid or solid.

» For equimolar counterdiffusion, N, = -Ng and the
convective term become zero. Then

N,=J,=-N, =-J, ...:(26)



The above equations can also be used in different forms.
For example, since N = cuy, and cx, = C,, (CXg = Cg ) thus
from Eq. (20):

dc

NA : CAUM — DAB d—ZA IIIII(27)
dc

NB — CBUM - DBA dZB lllll(28)

Therefore, the appropriate equation used to solve a
problem would entirely depends on the information
given in the problem.

Those equations are the basic equations for mass
transfer in a non-turbulent fluid phase. It accounts for
the amount of component A carried by the convective
bulk flow of the fluid and the amount of A being
transferred by molecular diffusion.




There are two types of situation will be discussed in the
syllabus:

1) Equimolar counterdiffusion

2) Unimolecular diffusion (diffusion of a single component
through stationary second component).



Equimolar Counterdiffusion

In equimolar
counterdiffusion, the molar
fluxes of A and B are equal,
but In opposite direction or
the net volumetric and molar
flows are zero.

A typical example of this
case Is the diffusion of A and
B in the vapor phase for
distillation that have constant
molar overflow.

Py
Py Pg,orP Pp2
Paa

Pgy

Figure 11 Equimolar counterdiffusion of gases A and B.

Pa1~ Pa2;
Pg, > Ppy
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> Since the net volumetric and molar flows are zero,
thus Eqg. (24) can be used with the convective term is
set to zero, as shown below:

» Eq. (29) is then integrated over a film thickness of z,
assuming a constant flux, J,:

—DygC & dXA = JAIOZT dz ..--.(30)

X Aj



Integrating Eq. (30) and rearranging gives:

D D
asC (X —Xa) OF J,=—22(Ch—Cn)  .....(31)

Z Z,

J,=

The concentration gradient for A is linear in the film,
and the gradient for B has the same magnitude but
the opposite sign.




Molecular of A diffuse to the right and B to the left.

Since the total pressure P is constant throughout,
the net moles of A diffusing to the right must equal
the net moles of B to the left.

If this is not so, the total pressure would not remain
constant. This means that

J,=-J, ene(32)

Writing Fick’s law for B for constant c,

Jg =—Dga— ...(33)

dz



Now since P = p, + pg = constant, then

C=C,+Cq  eemn (34)

Differentiating both sides,

dc, =-dc, (35)
Thus,
dc dx dc dx
Jo =Dy d—ZA —CD g d—ZA =—Jg = _( )DBA d—ZB (_)CDBA d—ZB (36)

Substituting and canceling like terms,
D, =Dg, I Y 4

» For a binary gas mixture of A and B, the diffusivity
coefficient D,g for A diffusing into B is the same as Dg,
for B diffusing into A.



Example :

Ammonia gas (A) is diffusing through a uniform tube 0.10 m long
containing N, gas (B) at 1.0132 x 10° Pa pressure and 298 K. At a point 1,
P; = 1.013 x 104 Pa and at a point 2, p,, = 0.507 x 10* Pa. The diffusivity
D,z = 0.230 x 10* m?/s. Calculate the flux J, at steady state and repeat
for J;.

Solution:

Given: P=1.0132 x 10° Pa T=298 K
Z,—2,=0.10m

Substitute known values into the following equation:

_ DAB(pAl B pAZ)
" RT(z,-2)




2

(0.23x10™ )Lm] (1.013x10* —0.507x10* )(Pa)

_ DAB(pAl_pAZ): S

RT(z,-z,) 8314( k;“;;)T?Kj(zgs)(K)(o.lo— 0)(m)

=4.70x107(kg mo'Aj
S-m?

For component B:

Pgi=P - pa; = 1.0132 x 105 - 1.013 x 104 = 9.119 x 10* Pa
Pg, = P —pa, = 1.0132 x 105 — 0.507 x 10% = 9.625 x 104 Pa

Hence,



2

(0.23x10™ )(mj (9.119x10* —9.625x10* )(Pa)

_ DBA(pBl_ pBZ): S

° RT(z,-12,) 8314( kg:;.oli-aKj(ZgS)(K)(O.lO_ O)(m)

=—4.70x107(kg mo'Bj

s-m?

» The negative value for Jz; means the flux goes from
point 2 to point 1.



Unimolecular Diffusion

In unimolecular diffusion, mass transfer of component A
occurs through stagnant component B, Ng = 0.

Therefore, the total flux to or away from the interface, N
IS the same as N,.

Special Case for A Diffusing Through
Stagnant, Nondiffusing B

» In this case one boundary at the end of the diffusion
path is impermeable to component B, so it cannot

pass through.



