
Relations Between Diffusivities, DAB, DBA

 is easily determined by ideal gases, since the molar

density does not depend on the composition:

RT

P
cc MBA  

For diffusion of A and B in a gas at constant temperature 

and pressure, 

0ddcdc MBA  

Choosing the reference plane for which there is zero

volume flow, we can set the sum of the molar diffusion

fluxes of A and B to zero, since the molar volumes are the

same:

…..(8)

…..(9)
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0
dz

dc
D

dz

dc
D

0JJ

B
BA

A
AB

BA





Since dCA=-dCB, the diffusivities must be equal, that is,

BAAB DD 

…..(10)

…..(11)

…..(12)
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 If we are dealing with liquids, the same results is

found if all mixtures of A and B have the same mass

density

0dcMdcM

McMc

BBAA

BBAA



 

For no volume flow across the reference plane, the sum

of the volumetric flows due to diffusion is zero. The

volumetric flow is the molar flow times the molar volume

M/ and

0
M

dz

dc
D

M

dz

dc
D BB

BA
AA

AB 



















Since MAdcA=-MBdcB, again the diffusivities must be equal,

thus,

BAAB DD 

…..(13)

…..(14)

…..(15)

…..(16)

31



General Case for Diffusion of Gases A

and B Plus Convection

 Up to now we have considered Fick’s law for diffusion

in a stationary fluid; that is, there has been no net

movement or convective flow of the entire phases of

the binary mixture A and B.

 The diffusion flux JA occurred because of the

concentration gradient.

 The rate at which moles A passed a fixed point to the

right, which will be taken as positive flux, is JA kg mol

A/sm2 .
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 This flux can be converted to a velocity of diffusion of 

A to the right by











3

2

m

Amole kg

s

m
   s)/m mole kg AAdA cA(J 

where         is the diffusion velocity of A in m/s. Ad 

 Now let us consider what happens when the whole

fluid is moving in bulk or convective flow to the right.

The molar average velocity of the whole fluid relative

to a stationary point is m/s.

 Component A is still diffusing to the right, but now its

velocity is measured relative to the moving fluid.

M 

Ad 

…..(17)
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 To a stationary observer, A is moving faster than the 

bulk of the phase, since its diffusion velocity        is 

added to that of the bulk phase       .
Ad 

M 

Ad M 

A 

MAdA   

 Expressed mathematically, the velocity of A relative to 

the stationary point is the sum of the diffusion velocity 

and the average or convective velocity

…..(18)
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Multiplying the above equation by cA.

MAdA  AAA ccc 

 Each of the three terms represents a flux.

 The first term, can be represented by the flux

NA (kg mol A/m2.s).

 The second term is JA, the diffusion flux relative to

the moving fluid.

 The third term is the convective flux of A relative to

the stationary point. Hence

AAc 

MA AA cJN 

…..(19)

…..(20)
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 Let N be the total convective flux of the whole stream 

relative to the stationary point. Then

BA NNcN  M

Or, solving for 
M 

c

NN
 BA M

Thus, substitute Eq. (22) into Eq. (20) 

 BA
A

A NN
c

c
JN A

Since JA is the Fick’s law, then

 BA
AA

AB NN
c

c

z

x
DcN 

d

d
A

…..(21)

…..(22)

…..(23)

…..(24)
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 Equation above is the final general equation for

diffusion plus convection to use when the flux NA is

used, which is relative to a stationary point.

 A similar equation can be written for NB.

 BA
BB

BA NN
c

c

z

x
DcN 

d

d
B

 To solve the above two equations, the relation between

the flux NA and NB must be known. The equations hold

for diffusion in a gas, liquid or solid.

 For equimolar counterdiffusion, NA = -NB and the

convective term become zero. Then

BBAA JNJN 

…..(25)

…..(26)
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The above equations can also be used in different forms.

For example, since N = cM and cxA = cA, (cxB = cB ) thus

from Eq. (20):

Therefore, the appropriate equation used to solve a

problem would entirely depends on the information

given in the problem.

Those equations are the basic equations for mass

transfer in a non-turbulent fluid phase. It accounts for

the amount of component A carried by the convective

bulk flow of the fluid and the amount of A being

transferred by molecular diffusion.

dz

dc
DcN A

ABMAA  

dz

dc
DυcN B

BAMBB 

…..(27)

…..(28)
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There are two types of situation will be discussed in the

syllabus:

1) Equimolar counterdiffusion

2) Unimolecular diffusion (diffusion of a single component

through stationary second component).
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Equimolar Counterdiffusion

In equimolar

counterdiffusion, the molar

fluxes of A and B are equal,

but in opposite direction or

the net volumetric and molar

flows are zero.

A typical example of this

case is the diffusion of A and

B in the vapor phase for

distillation that have constant

molar overflow. pA1 > pA2; 

PB2 > PB1
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 Since the net volumetric and molar flows are zero,

thus Eq. (24) can be used with the convective term is

set to zero, as shown below:

dz

dx
cDJ A

ABA 

 Eq. (29) is then integrated over a film thickness of zT,

assuming a constant flux, JA:

…..(29)

 
TA

Ai

z

A

x

x
AAB dzJdxcD

0

…..(30)
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 Integrating Eq. (30) and rearranging gives:

 The concentration gradient for A is linear in the film, 

and the gradient for B has the same magnitude but 

the opposite sign.

)(or       )( AAi

T

AB
AAAi

T

AB
A cc

z

D
Jxx

z

cD
J  …..(31)



 Molecular of A diffuse to the right and B to the left.

 Since the total pressure P is constant throughout,

the net moles of A diffusing to the right must equal

the net moles of B to the left.

 If this is not so, the total pressure would not remain

constant. This means that

BA JJ 

 Writing Fick’s law for B for constant c,

dz

dc
DJ B

BAB 

…..(32)

…..(33)
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Now since P = pA + pB = constant, then

BA ccc 

Differentiating both sides, 

BA -dcdc 

Thus,

   
dz

dx
cD

dz

dc
DJ

dz

dx
cD

dz

dc
DJ B

BA
B

BAB
A

AB
A

ABA 

Substituting and canceling like terms,

BAAB DD 

 For a binary gas mixture of A and B, the diffusivity

coefficient DAB for A diffusing into B is the same as DBA

for B diffusing into A.

…..(34)

…..(35)

…..(36)

…..(37)
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Example :

Ammonia gas (A) is diffusing through a uniform tube 0.10 m long
containing N2 gas (B) at 1.0132 x 105 Pa pressure and 298 K. At a point 1,
pA1 = 1.013 x 104 Pa and at a point 2, pA2 = 0.507 x 104 Pa. The diffusivity
DAB = 0.230 x 10-4 m2/s. Calculate the flux JA at steady state and repeat
for JB.

Solution:

Given: P = 1.0132 x 105 Pa                         T = 298 K
z2 – z1 = 0.10 m

Substitute known values into the following equation:

 
)( 12

21

zzRT

ppD
J AAAB

A




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 
    
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









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
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














2

7

3

44
2

4

ms

Amolkg
10x70.4

m010.0K298
Kmolkg

Pam
8314

Pa10x507.010x013.1
s

m
10x23.0

)zRT(z

ppD
J

12

A2A1AB
A

For component B:

pB1 = P - pA1 = 1.0132 x 105 – 1.013 x 104 = 9.119 x 104 Pa

pB2 = P – pA2 = 1.0132 x 105 – 0.507 x 104 = 9.625 x 104 Pa

Hence,
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ms
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B2B1BA
B

 The negative value for JB means the flux goes from

point 2 to point 1.
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Unimolecular Diffusion 

In unimolecular diffusion, mass transfer of component A

occurs through stagnant component B, NB = 0.

Therefore, the total flux to or away from the interface, N

is the same as NA.

Special Case for A Diffusing Through

Stagnant, Nondiffusing B

 In this case one boundary at the end of the diffusion

path is impermeable to component B, so it cannot

pass through.
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