
Relations Between Diffusivities, DAB, DBA

 is easily determined by ideal gases, since the molar

density does not depend on the composition:

RT

P
cc MBA  

For diffusion of A and B in a gas at constant temperature 

and pressure, 

0ddcdc MBA  

Choosing the reference plane for which there is zero

volume flow, we can set the sum of the molar diffusion

fluxes of A and B to zero, since the molar volumes are the

same:

…..(8)

…..(9)
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Since dCA=-dCB, the diffusivities must be equal, that is,

BAAB DD 

…..(10)

…..(11)

…..(12)
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 If we are dealing with liquids, the same results is

found if all mixtures of A and B have the same mass

density

0dcMdcM

McMc

BBAA

BBAA



 

For no volume flow across the reference plane, the sum

of the volumetric flows due to diffusion is zero. The

volumetric flow is the molar flow times the molar volume
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Since MAdcA=-MBdcB, again the diffusivities must be equal,

thus,

BAAB DD 

…..(13)

…..(14)

…..(15)

…..(16)
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General Case for Diffusion of Gases A

and B Plus Convection

 Up to now we have considered Fick’s law for diffusion

in a stationary fluid; that is, there has been no net

movement or convective flow of the entire phases of

the binary mixture A and B.

 The diffusion flux JA occurred because of the

concentration gradient.

 The rate at which moles A passed a fixed point to the

right, which will be taken as positive flux, is JA kg mol

A/sm2 .
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 This flux can be converted to a velocity of diffusion of 

A to the right by











3

2

m

Amole kg

s

m
   s)/m mole kg AAdA cA(J 

where         is the diffusion velocity of A in m/s. Ad 

 Now let us consider what happens when the whole

fluid is moving in bulk or convective flow to the right.

The molar average velocity of the whole fluid relative

to a stationary point is m/s.

 Component A is still diffusing to the right, but now its

velocity is measured relative to the moving fluid.

M 

Ad 

…..(17)
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 To a stationary observer, A is moving faster than the 

bulk of the phase, since its diffusion velocity        is 

added to that of the bulk phase       .
Ad 

M 

Ad M 

A 

MAdA   

 Expressed mathematically, the velocity of A relative to 

the stationary point is the sum of the diffusion velocity 

and the average or convective velocity

…..(18)
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Multiplying the above equation by cA.

MAdA  AAA ccc 

 Each of the three terms represents a flux.

 The first term, can be represented by the flux

NA (kg mol A/m2.s).

 The second term is JA, the diffusion flux relative to

the moving fluid.

 The third term is the convective flux of A relative to

the stationary point. Hence

AAc 

MA AA cJN 

…..(19)

…..(20)
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 Let N be the total convective flux of the whole stream 

relative to the stationary point. Then

BA NNcN  M

Or, solving for 
M 

c

NN
 BA M

Thus, substitute Eq. (22) into Eq. (20) 

 BA
A

A NN
c

c
JN A

Since JA is the Fick’s law, then

 BA
AA

AB NN
c

c

z

x
DcN 

d

d
A

…..(21)

…..(22)

…..(23)

…..(24)
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 Equation above is the final general equation for

diffusion plus convection to use when the flux NA is

used, which is relative to a stationary point.

 A similar equation can be written for NB.

 BA
BB

BA NN
c

c

z

x
DcN 

d

d
B

 To solve the above two equations, the relation between

the flux NA and NB must be known. The equations hold

for diffusion in a gas, liquid or solid.

 For equimolar counterdiffusion, NA = -NB and the

convective term become zero. Then

BBAA JNJN 

…..(25)

…..(26)
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The above equations can also be used in different forms.

For example, since N = cM and cxA = cA, (cxB = cB ) thus

from Eq. (20):

Therefore, the appropriate equation used to solve a

problem would entirely depends on the information

given in the problem.

Those equations are the basic equations for mass

transfer in a non-turbulent fluid phase. It accounts for

the amount of component A carried by the convective

bulk flow of the fluid and the amount of A being

transferred by molecular diffusion.

dz

dc
DcN A

ABMAA  

dz

dc
DυcN B

BAMBB 

…..(27)

…..(28)
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There are two types of situation will be discussed in the

syllabus:

1) Equimolar counterdiffusion

2) Unimolecular diffusion (diffusion of a single component

through stationary second component).
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Equimolar Counterdiffusion

In equimolar

counterdiffusion, the molar

fluxes of A and B are equal,

but in opposite direction or

the net volumetric and molar

flows are zero.

A typical example of this

case is the diffusion of A and

B in the vapor phase for

distillation that have constant

molar overflow. pA1 > pA2; 

PB2 > PB1
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Figure 11
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 Since the net volumetric and molar flows are zero,

thus Eq. (24) can be used with the convective term is

set to zero, as shown below:

dz

dx
cDJ A

ABA 

 Eq. (29) is then integrated over a film thickness of zT,

assuming a constant flux, JA:

…..(29)

 
TA

Ai

z

A

x

x
AAB dzJdxcD

0

…..(30)
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 Integrating Eq. (30) and rearranging gives:

 The concentration gradient for A is linear in the film, 

and the gradient for B has the same magnitude but 

the opposite sign.

)(or       )( AAi

T

AB
AAAi

T

AB
A cc

z

D
Jxx

z

cD
J  …..(31)



 Molecular of A diffuse to the right and B to the left.

 Since the total pressure P is constant throughout,

the net moles of A diffusing to the right must equal

the net moles of B to the left.

 If this is not so, the total pressure would not remain

constant. This means that

BA JJ 

 Writing Fick’s law for B for constant c,

dz

dc
DJ B

BAB 

…..(32)

…..(33)
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Now since P = pA + pB = constant, then

BA ccc 

Differentiating both sides, 

BA -dcdc 

Thus,

   
dz

dx
cD

dz

dc
DJ

dz

dx
cD

dz

dc
DJ B

BA
B

BAB
A

AB
A

ABA 

Substituting and canceling like terms,

BAAB DD 

 For a binary gas mixture of A and B, the diffusivity

coefficient DAB for A diffusing into B is the same as DBA

for B diffusing into A.

…..(34)

…..(35)

…..(36)

…..(37)
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Example :

Ammonia gas (A) is diffusing through a uniform tube 0.10 m long
containing N2 gas (B) at 1.0132 x 105 Pa pressure and 298 K. At a point 1,
pA1 = 1.013 x 104 Pa and at a point 2, pA2 = 0.507 x 104 Pa. The diffusivity
DAB = 0.230 x 10-4 m2/s. Calculate the flux JA at steady state and repeat
for JB.

Solution:

Given: P = 1.0132 x 105 Pa                         T = 298 K
z2 – z1 = 0.10 m

Substitute known values into the following equation:
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For component B:

pB1 = P - pA1 = 1.0132 x 105 – 1.013 x 104 = 9.119 x 104 Pa

pB2 = P – pA2 = 1.0132 x 105 – 0.507 x 104 = 9.625 x 104 Pa

Hence,
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 The negative value for JB means the flux goes from

point 2 to point 1.
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Unimolecular Diffusion 

In unimolecular diffusion, mass transfer of component A

occurs through stagnant component B, NB = 0.

Therefore, the total flux to or away from the interface, N

is the same as NA.

Special Case for A Diffusing Through

Stagnant, Nondiffusing B

 In this case one boundary at the end of the diffusion

path is impermeable to component B, so it cannot

pass through.
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