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EXAMPLE 3–3 Consider the spring-mass-dashpot system mounted on a massless cart as shown in Figure 3–3. Let
us obtain mathematical models of this system by assuming that the cart is standing still for t<0 and
the spring-mass-dashpot system on the cart is also standing still for t<0. In this system, u(t) is the
displacement of the cart and is the input to the system.At t=0, the cart is moved at a constant speed,
or constant. The displacement y(t) of the mass is the output. (The displacement is relative to
the ground.) In this system,m denotes the mass, b denotes the viscous-friction coefficient, and k de-
notes the spring constant.We assume that the friction force of the dashpot is proportional to 
and that the spring is a linear spring; that is, the spring force is proportional to y-u.

For translational systems, Newton’s second law states that

where m is a mass, a is the acceleration of the mass, and is the sum of the forces acting on the
mass in the direction of the acceleration a. Applying Newton’s second law to the present system
and noting that the cart is massless, we obtain

or

This equation represents a mathematical model of the system considered. Taking the Laplace
transform of this last equation, assuming zero initial condition, gives

Taking the ratio of Y(s) to U(s), we find the transfer function of the system to be

Such a transfer-function representation of a mathematical model is used very frequently in
control engineering.
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Next we shall obtain a state-space model of this system. We shall first compare the differen-
tial equation for this system

with the standard form

and identify a1, a2, b0, b1, and b2 as follows:

Referring to Equation (3–35), we have

Then, referring to Equation (2–34), define

From Equation (2–36) we have

and the output equation becomes

or

(3–3)

and

(3–4)

Equations (3–3) and (3–4) give a state-space representation of the system. (Note that this is not
the only state-space representation.There are infinitely many state-space representations for the
system.)
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EXAMPLE 3–4 Obtain the transfer functions and of the mechanical system shown in
Figure 3–4.

The equations of motion for the system shown in Figure 3–4 are

Simplifying, we obtain

Taking the Laplace transforms of these two equations, assuming zero initial conditions, we obtain

(3–5)

(3–6)

Solving Equation (3–6) for and substituting it into Equation (3–5) and simplifying, we get

from which we obtain

(3–7)

From Equations (3–6) and (3–7) we have

(3–8)

Equations (3–7) and (3–8) are the transfer functions and respectively.

EXAMPLE 3–5 An inverted pendulum mounted on a motor-driven cart is shown in Figure 3–5(a).This is a model
of the attitude control of a space booster on takeoff. (The objective of the attitude control prob-
lem is to keep the space booster in a vertical position.) The inverted pendulum is unstable in that
it may fall over any time in any direction unless a suitable control force is applied. Here we consider
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only a two-dimensional problem in which the pendulum moves only in the plane of the page.The
control force u is applied to the cart. Assume that the center of gravity of the pendulum rod is at
its geometric center. Obtain a mathematical model for the system.

Define the angle of the rod from the vertical line as u. Define also the (x, y) coordinates of
the center of gravity of the pendulum rod as AxG, yG B . Then

yG = l cosu

xG = x + l sin u
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To derive the equations of motion for the system, consider the free-body diagram shown in 
Figure 3–5(b). The rotational motion of the pendulum rod about its center of gravity can be
described by

(3–9)

where I is the moment of inertia of the rod about its center of gravity.
The horizontal motion of center of gravity of pendulum rod is given by

(3–10)

The vertical motion of center of gravity of pendulum rod is

(3–11)

The horizontal motion of cart is described by

(3–12)

Since we must keep the inverted pendulum vertical, we can assume that u(t) and are
small quantities such that sinu u, cosu=1, and Then, Equations (3–9) through (3–11)
can be linearized. The linearized equations are

(3–13)
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(3–15)

From Equations (3–12) and (3–14), we obtain

(3–16)

From Equations (3–13), (3–14), and (3–15), we have

or
(3–17)

Equations (3–16) and (3–17) describe the motion of the inverted-pendulum-on-the-cart system.
They constitute a mathematical model of the system.

EXAMPLE 3–6 Consider the inverted-pendulum system shown in Figure 3–6. Since in this system the mass is con-
centrated at the top of the rod, the center of gravity is the center of the pendulum ball. For this
case, the moment of inertia of the pendulum about its center of gravity is small, and we assume
I=0 in Equation (3–17). Then the mathematical model for this system becomes as follows:
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Equation (3–20) was obtained by eliminating from Equations (3–18) and (3–19). Equation
(3–21) was obtained by eliminating from Equations (3–18) and (3–19). From Equation (3–20)
we obtain the plant transfer function to be

The inverted-pendulum plant has one pole on the negative real axis and
another on the positive real axis Hence, the plant is open-loop unstable.

Define state variables x1, x2, x3, and x4 by

Note that angle u indicates the rotation of the pendulum rod about point P, and x is the location
of the cart. If we consider u and x as the outputs of the system, then

(Notice that both u and x are easily measurable quantities.) Then, from the definition of the state
variables and Equations (3–20) and (3–21), we obtain
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In terms of vector-matrix equations, we have

(3–22)

(3–23)

Equations (3–22) and (3–23) give a state-space representation of the inverted-pendulum system.
(Note that state-space representation of the system is not unique. There are infinitely many such
representations for this system.)
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3–3 MATHEMATICAL MODELING OF ELECTRICAL SYSTEMS

Basic laws governing electrical circuits are Kirchhoff’s current law and voltage law.
Kirchhoff’s current law (node law) states that the algebraic sum of all currents entering and
leaving a node is zero. (This law can also be stated as follows: The sum of currents enter-
ing a node is equal to the sum of currents leaving the same node.) Kirchhoff’s voltage law
(loop law) states that at any given instant the algebraic sum of the voltages around any loop
in an electrical circuit is zero. (This law can also be stated as follows: The sum of the volt-
age drops is equal to the sum of the voltage rises around a loop.) A mathematical model
of an electrical circuit can be obtained by applying one or both of Kirchhoff’s laws to it.

This section first deals with simple electrical circuits and then treats mathematical
modeling of operational amplifier systems.

LRC Circuit. Consider the electrical circuit shown in Figure 3–7. The circuit con-
sists of an inductance L (henry), a resistance R (ohm), and a capacitance C (farad).
Applying Kirchhoff’s voltage law to the system, we obtain the following equations:
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Equations (3–24) and (3–25) give a mathematical model of the circuit.
A transfer-function model of the circuit can also be obtained as follows: Taking the

Laplace transforms of Equations (3–24) and (3–25), assuming zero initial conditions,
we obtain

If ei is assumed to be the input and eo the output, then the transfer function of this system
is found to be

(3–26)

A state-space model of the system shown in Figure 3–7 may be obtained as follows: First,
note that the differential equation for the system can be obtained from Equation (3–26) as

Then by defining state variables by

and the input and output variables by

we obtain

and

These two equations give a mathematical model of the system in state space.

Transfer Functions of Cascaded Elements. Many feedback systems have com-
ponents that load each other. Consider the system shown in Figure 3–8. Assume that ei

is the input and eo is the output. The capacitances C1 and C2 are not charged initially.
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It will be shown that the second stage of the circuit (R2C2 portion) produces a loading
effect on the first stage (R1C1 portion). The equations for this system are

(3–27)

and

(3–28)

(3–29)

Taking the Laplace transforms of Equations (3–27) through (3–29), respectively, using
zero initial conditions, we obtain

(3–30)

(3–31)

(3–32)

Eliminating I1(s) from Equations (3–30) and (3–31) and writing Ei(s) in terms of I2(s),
we find the transfer function between Eo(s) and Ei(s) to be

(3–33)

The term R1C2s in the denominator of the transfer function represents the interaction
of two simple RC circuits. Since the two roots
of the denominator of Equation (3–33) are real.

The present analysis shows that, if two RC circuits are connected in cascade so
that the output from the first circuit is the input to the second, the overall transfer
function is not the product of and The reason for this
is that, when we derive the transfer function for an isolated circuit, we implicitly as-
sume that the output is unloaded. In other words, the load impedance is assumed to
be infinite, which means that no power is being withdrawn at the output.When the sec-
ond circuit is connected to the output of the first, however, a certain amount of power
is withdrawn, and thus the assumption of no loading is violated. Therefore, if the trans-
fer function of this system is obtained under the assumption of no loading, then it is
not valid. The degree of the loading effect determines the amount of modification of
the transfer function.
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