EXAMPLE PROBLEMS AND SOLUTIONS

A-2-1. \quad Simplify the block diagram shown in Figure 2-17.
Solution. First, move the branch point of the path involving H_{1} outside the loop involving H_{2}, as shown in Figure 2-18(a). Then eliminating two loops results in Figure 2-18(b). Combining two blocks into one gives Figure 2-18(c).

A-2-2. Simplify the block diagram shown in Figure 2-19. Obtain the transfer function relating $C(s)$ and $R(s)$.

Figure 2-17
Block diagram of a system.

Figure 2-18
Simplified block diagrams for the system shown in Figure 2-17.

Figure 2-19
Block diagram of a system.

Figure 2-20
Reduction of the block diagram shown in Figure 2-19.

Solution. The block diagram of Figure 2-19 can be modified to that shown in Figure 2-20(a). Eliminating the minor feedforward path, we obtain Figure 2-20(b), which can be simplified to Figure 2-20(c). The transfer function $C(s) / R(s)$ is thus given by

$$
\frac{C(s)}{R(s)}=G_{1} G_{2}+G_{2}+1
$$

The same result can also be obtained by proceeding as follows: Since signal $X(s)$ is the sum of two signals $G_{1} R(s)$ and $R(s)$, we have

$$
X(s)=G_{1} R(s)+R(s)
$$

The output signal $C(s)$ is the sum of $G_{2} X(s)$ and $R(s)$. Hence

$$
C(s)=G_{2} X(s)+R(s)=G_{2}\left[G_{1} R(s)+R(s)\right]+R(s)
$$

And so we have the same result as before:

$$
\frac{C(s)}{R(s)}=G_{1} G_{2}+G_{2}+1
$$

A-2-3. Simplify the block diagram shown in Figure 2-21. Then obtain the closed-loop transfer function $C(s) / R(s)$.

Figure 2-21
Block diagram of a system.

Figure 2-22
Successive
reductions of the
block diagram shown in Figure 2-21.

(c)

Solution. First move the branch point between G_{3} and G_{4} to the right-hand side of the loop containing G_{3}, G_{4}, and H_{2}. Then move the summing point between G_{1} and G_{2} to the left-hand side of the first summing point. See Figure 2-22(a). By simplifying each loop, the block diagram can be modified as shown in Figure 2-22(b). Further simplification results in Figure 2-22(c), from which the closed-loop transfer function $C(s) / R(s)$ is obtained as

$$
\frac{C(s)}{R(s)}=\frac{G_{1} G_{2} G_{3} G_{4}}{1+G_{1} G_{2} H_{1}+G_{3} G_{4} H_{2}-G_{2} G_{3} H_{3}+G_{1} G_{2} G_{3} G_{4} H_{1} H_{2}}
$$

A-2-4. Obtain transfer functions $C(s) / R(s)$ and $C(s) / D(s)$ of the system shown in Figure 2-23.
Solution. From Figure 2-23 we have

$$
\begin{align*}
& U(s)=G_{f} R(s)+G_{c} E(s) \tag{2-47}\\
& C(s)=G_{p}\left[D(s)+G_{1} U(s)\right] \tag{2-48}\\
& E(s)=R(s)-H C(s) \tag{2-49}
\end{align*}
$$

By substituting Equation (2-47) into Equation (2-48), we get

$$
\begin{equation*}
C(s)=G_{p} D(s)+G_{1} G_{p}\left[G_{f} R(s)+G_{c} E(s)\right] \tag{2-50}
\end{equation*}
$$

By substituting Equation (2-49) into Equation (2-50), we obtain

$$
C(s)=G_{p} D(s)+G_{1} G_{p}\left\{G_{f} R(s)+G_{c}[R(s)-H C(s)]\right\}
$$

Solving this last equation for $C(s)$, we get

$$
C(s)+G_{1} G_{p} G_{c} H C(s)=G_{p} D(s)+G_{1} G_{p}\left(G_{f}+G_{c}\right) R(s)
$$

Hence

$$
\begin{equation*}
C(s)=\frac{G_{p} D(s)+G_{1} G_{p}\left(G_{f}+G_{c}\right) R(s)}{1+G_{1} G_{p} G_{c} H} \tag{2-51}
\end{equation*}
$$

Note that Equation (2-51) gives the response $C(s)$ when both reference input $R(s)$ and disturbance input $D(s)$ are present.

To find transfer function $C(s) / R(s)$, we let $D(s)=0$ in Equation (2-51). Then we obtain

$$
\frac{C(s)}{R(s)}=\frac{G_{1} G_{p}\left(G_{f}+G_{c}\right)}{1+G_{1} G_{p} G_{c} H}
$$

Similarly, to obtain transfer function $C(s) / D(s)$, we let $R(s)=0$ in Equation (2-51). Then $C(s) / D(s)$ can be given by

$$
\frac{C(s)}{D(s)}=\frac{G_{p}}{1+G_{1} G_{p} G_{c} H}
$$

A-2-5. Figure 2-24 shows a system with two inputs and two outputs. Derive $C_{1}(s) / R_{1}(s), C_{1}(s) / R_{2}(s)$, $C_{2}(s) / R_{1}(s)$, and $C_{2}(s) / R_{2}(s)$. (In deriving outputs for $R_{1}(s)$, assume that $R_{2}(s)$ is zero, and vice versa.)

Figure 2-24
System with two inputs and two outputs.

