Film Theory

- In the previous lectures, diffusion and mass transfer within fluids were considered.
- However, in separation processes such as absorption, distillation and extraction) the mass is transferred across an interface between a gas and a liquid or between two liquids.

Figure 13

- Several models have been developed to describe mass transfer at a fluid phase boundary. The earliest and simplest of these is the film theory proposed by Whitman in 1923.
- The film theory is based on the assumption that for a fluid flowing turbulently over a solid, the entire resistance to mass transfer resides in a stagnant film in the fluid next to the surface.
- Consider the case of a fluid flowing in a cylinder in which a solid dissolves from the walls of the cylinder into the fluid.
- When a fluid flows turbulently past a solid surface, with mass transfer occurring from the surface to the fluid, the concentration-distance relation is as shown in Figure 14.

> The film theory postulates that the concentration will follow the broken curve of the figure, such that the entire concentration difference $c_{A1} - c_{A2}$ is attributed to molecular diffusion within an "effective" film of thickness z_{F} .

Figure 14 Film theory

3 regions of mass transfer (MT) can be visualized:

Region	Position	Type of MT	
1	Adjacent to the surface, a thin, viscous sublayer film is present.	Molecular diffusion, few or no eddies are present. Large concentration drop occurs across this film, slow rate of diffusion.	
2	Transition/buffer region, adjacent to the first region.	Some eddies are present, MT is the sum of turbulent and molecular diffusion.	
3	Adjacent to the buffer region (turbulent region).	Most of the transfer is by turbulent diffusion, with small amount by molecular diffusion. The concentration decrease is very small, eddies tend to keep the fluid concentration uniform.	

Mass Transfer Theories

- > The equations developed so far can only predicts steady state mass transfer provided the film thickness (z_T) is known.
- > However, in most cases, the value of z_{τ} is not known as turbulent flow is desired to increase the rate of transfer per unit area or to create more interfacial area.
- Thus in turbulent flow, a mass transfer coefficient (k) is used, which is defined as:

since

 $\frac{\text{Rate of mass transfer}}{\text{Area}} = \text{molar flux, } J \qquad \dots (70)$

Therefore:

$$k_x = \frac{J_A}{x_{Ai} - x_A} \qquad \text{in t}$$

in terms of molar fraction in liquid(73) phase

- > Note that only the unit of k_c is in cm/s, while the unit of k_x and k_y is similar to J_A as molar fraction is dimensionless.
- > However, k_c can be correlated with k_x and k_y by the molar density:

$$k_{y} = k_{c} \rho_{M} = \frac{k_{c} P}{RT} \qquad \dots (74)$$

$$k_{x} = k_{c}\rho_{M} = \frac{k_{c}\rho_{x}}{\overline{M}} \qquad \dots (75)$$

where:

- ρ_M = molar density of fluid (mole/m³)
- ρ_x = normal density of fluid (kg/m³)
- \overline{M} = average molecular weight of fluid (kg/mole)

> The significance of k_c is brought out by combining Eq. (71) with Eq. (31) for steady state equimolar counterdiffusion in a stagnant film. Combination of both equations give:

$$k_{c} = \frac{J_{A}}{c_{Ai} - c_{A}} = \frac{D_{AB}(c_{Ai} - c_{A})}{z_{T}} \frac{1}{(c_{Ai} - c_{A})}$$
....(76)
$$k_{c} = \frac{D_{AB}}{z_{T}}$$
....(77)

- Thus, the mass transfer coefficient is the molecular diffusivity divided by the thickness of the diffusion path.
- > When dealing with <u>unsteady state diffusion</u> (with changing in concentration gradients and mass transfer rates) or <u>diffusion in flowing streams</u>, Eq. (77) still can be used to give an effective film thickness from known value of k_c and D_{AB} .

EXERCISE:

SO₂ (A) is absorbed into water (B) from air in an absorption tower. At a specific location, SO₂ is transferred at the rate of 0.0270 kmol SO₂/m².h and the liquid phase mole fraction are 0.0025 and 0.0003 respectively, at the two-phase interphase and in the bulk liquid. If the diffusivity of SO₂ in water is 1.7×10^{-5} cm²/s, determine the mass-transfer coefficient, k_c and the film thickness, z_T neglecting the bulk flow effect.

Ans: z_{τ} = 0.0028 cm

Solution

Given:

$$x_{Ai} = 0.0025$$

 $x_{Ab} = 0.0003$
 $N_A = 0.027 \text{ kmol SO}_2/\text{m}^2.\text{h}$
 $D_{AB} = 1.7 \times 10^{-5} \text{ cm}^2/\text{s}$

$$N_{SO_{2}} = \frac{0.027 \frac{\text{kmol SO}_{2}}{\text{m}^{2} \cdot \text{h}} \times 1000 \frac{\text{mol}}{\text{kmol}}}{3600 \frac{\text{s}}{\text{h}} \times \left(100 \frac{\text{cm}}{\text{m}}\right)^{2}} = 7.5 \times 10^{-7} \frac{\text{mol}}{\text{cm}^{2} \cdot \text{s}}$$

For dilute conditions, the concentration of water is:

$$c = \frac{1 \frac{g}{\text{cm}^3}}{18.02 \frac{g}{\text{mol}}} = 5.55 \times 10^{-2} \frac{\text{mol}}{\text{cm}^3}$$

From equations:

$$k_{c} = \frac{D_{AB}}{z_{T}} \qquad N_{A} = \frac{cD_{AB}}{z_{T}} (x_{Ai} - x_{Ab})$$

$$k_{c} = \frac{D_{AB}}{z_{T}} = \frac{N_{A}}{c(x_{Ai} - x_{Ab})}$$

$$= \frac{7.5 \times 10^{-7} (\frac{mol}{cm^{2} \cdot s})}{5.55 \times 10^{-2} (\frac{mol}{cm^{3}})(0.0025 - 0.0003)}$$

$$= 6.14 \times 10^{-3} \text{ cm/s}$$
Therefore:
$$z_{T} = \frac{D_{AB}}{k_{c}} = \frac{1.7 \times 10^{-5} (\frac{cm^{2}}{s})}{6.14 \times 10^{-3} (\frac{cm}{s})} = 0.0028 \text{ cm}$$

Effective film thickness, z_{T} is very small and this is typical for turbulent flow mass transfer processes.

Type of MT Coefficients

A) Definition of MT coefficients:

For turbulent MT with constant *c* :

$$J_A = -(D_{AB} + \varepsilon_M) \frac{dc_A}{dz} \qquad \dots (78)$$

where:

 D_{AB} = molecular diffusivity (m²/s) ε_M = mass eddy diffusivity (m²/s)

 ε_M is variable, near to zero at the interface or surface and increases as the distance from the wall increases.

Since the variation of ε_M is not generally known, use the average value of $\overline{\varepsilon_M}$. Integrating Eq. (78) between points 1 and 2 gives:

$$J_{A1} = \frac{D_{AB} + \mathcal{E}_{M}}{z_{2} - z_{1}} (c_{A1} - c_{A2}) \qquad \dots (79)$$

The flux J_{A1} is based on the surface area A_1 since the cross sectional area may vary. The value of $z_2 - z_1$, the distance of the path is often not known. Hence, Eq. (79) is simplified and is written using a convective mass-transfer coefficient k'_c :

$$J_{A1} = k_c'(c_{A1} - c_{A2}) \qquad \dots (80)$$

where k

$$k_c' = \frac{D_{AB} + \overline{\varepsilon_M}}{z_2 - z_1}$$

.....(81)

B) MT coefficient for equimolar counterdiffusion

Similar to the total molar flux, N_A in molecular diffusion with the term ε_M added:

$$N_A = -c(D_{AB} + \varepsilon_M)\frac{dx_A}{dz} + x_A(N_A + N_B) \qquad \dots (82)$$

For the case of equimolar counterdiffusion, where

 $N_A = -N_B$, and integrating at steady state, calling

$$k_{c}' = \frac{D_{AB} + \varepsilon_{M}}{z_{2} - z_{1}}$$

gives

$$N_A = k_c'(c_{A1} - c_{A2})$$
(83)

MT coefficients can also be defined in several ways. Consider:

- y_A = mole fraction in vapor phase
- x_A = mole fraction in liquid phase

Therefore, Eq. (83) can be written as follows for equimolar counterdiffusion:

Gases:

$$N_{A} = k_{c}'(c_{A1} - c_{A2}) = k_{G}'(p_{A1} - p_{A2}) = k_{y}'(y_{A1} - y_{A2}) \qquad \dots (84)$$

Liquids:

$$N_{A} = k_{c}'(c_{A1} - c_{A2}) = k_{L}'(c_{A1} - c_{A2}) = k_{x}'(x_{A1} - x_{A2}) \qquad \dots (85)$$

All of these MT coefficients can be related to each other. For example, using Eq. (84) and substituting $y_{A1} = c_{A1}/c$ and $y_{A2} = c_{A2}/c$ into the equation:

$$N_{A} = k_{c}'(c_{A1} - c_{A2}) = k_{y}'(y_{A1} - y_{A2}) = k_{y}'(\frac{c_{A1}}{c} - \frac{c_{A2}}{c}) = \frac{k_{y}}{c}(c_{A1} - c_{A2})$$
.....(86)

Hence

$$k_{c}' = \frac{k_{y}'}{c}$$

.....(87)

C) <u>MT coefficient for A diffusing through stagnant</u>, <u>nondiffusing B</u>

For A diffusing through stagnant, nondiffusing B where $N_B = 0$, Eq. (82) gives for steady state:

$$N_{A} = \frac{k_{c}'}{x_{BM}} (c_{A1} - c_{A2}) = k_{c} (c_{A1} - c_{A2})$$

$$= \frac{k_{x}'}{x_{BM}} (x_{A1} - x_{A2}) = k_{x} (x_{A1} - x_{A2})$$
.....(88)

where:

 $k_c =$ MT coefficient for A diffusing through stagnant B. x_{BM} and y_{BM} are similar to the equations defined in the previous lectures.

Rewriting Eq. (88) using other units:

Gases:

$$N_A = k_c (c_{A1} - c_{A2}) = k_G (p_{A1} - p_{A2}) = k_y (y_{A1} - y_{A2}) \quad \dots (89)$$

Liquids:

$$N_A = k_c (c_{A1} - c_{A2}) = k_L (c_{A1} - c_{A2}) = k_x (x_{A1} - x_{A2}) \qquad \dots (90)$$

All of these MT coefficients can be related to each other. For example, setting Eq. (88) equal to Eq. (90) gives:

$$N_{A} = \frac{k_{c}}{x_{BM}} (c_{A1} - c_{A2}) = k_{x} (x_{A1} - x_{A2}) = k_{x} \left(\frac{c_{A1}}{c} - \frac{c_{A2}}{c}\right) \quad \dots (91)$$

Hence

.....(92)

Summary

TABLE 7.2-1. Flux Equations and Mass-Transfer Coefficients

Flux equations for equimolar counterdiffusion Gases: $N_A = k'_c(c_{A1} - c_{A2}) = k'_G(p_{A1} - p_{A2}) = k'_y(y_{A1} - y_{A2})$ Liquids: $N_A = k'_c(c_{A1} - c_{A2}) = k'_L(c_{A1} - c_{A2}) = k'_x(x_{A1} - x_{A2})$

 Flux equations for A diffusing through stagnant, nondiffusing B
 Gases:
 $N_A = k_c(c_{A1} - c_{A2}) = k_G(p_{A1} - p_{A2}) = k_y(y_{A1} - y_{A2})$

 Liquids:
 $N_A = k_c(c_{A1} - c_{A2}) = k_L(c_{A1} - c_{A2}) = k_x(x_{A1} - x_{A2})$

Conversions between mass-transfer coefficients Gases:

 $k'_{c}c = k'_{c}\frac{P}{RT} = k_{c}\frac{p_{BM}}{RT} = k'_{G}P = k_{G}p_{BM} = k_{y}y_{BM} = k'_{y} = k_{c}y_{BM}c = k_{G}y_{BM}P$

Liquids:

$$k'_c c = k'_L c = k_L x_{BM} c = k'_L \rho / M = k'_x = k_x x_{BM}$$

(where ρ is density of liquid and M is molecular weight)

Units of mass-transfer coefficients

k_c, k_L, k_c', k_L'	SI Units	Cgs Units	English Units
	m/s	cm/s	ft/h
k_x, k_y, k'_x, k'_y	kg mol	g mol	lb mol
	$s \cdot m^2 \cdot mol \ frac$	$s \cdot cm^2 \cdot mol frac$	$h \cdot ft^2 \cdot mol \ frac$
k k'	kg mol kg mol	g mol	lb mol
κ_G, κ_G	$s \cdot m^2 \cdot Pa \ s \cdot m^2 \cdot atm$	$s \cdot cm^2 \cdot atm$	$h \cdot ft^2 \cdot atm$
	(preferred)		

Example :

A large volume of pure gas *B* at 2 atm pressure is flowing over a surface from which pure *A* is vaporizing. The liquid *A* completely wets the surface, which is the blotting paper. Hence, the partial pressure of *A* at the surface is the vapor pressure of *A* at 298 K, which is 0.20 atm. The k'_y has been estimated to be 6.78 x 10⁻⁵ kg mole/m²·s·mole frac. Calculate N_A , the vaporization rate, and also the value of k_y and k_G .

Solution:

This is the case of A diffusing through B, where the flux of B normal to the surface is zero, since B is in large volume and assuming that B is not soluble in liquid A.

 $p_{A1} = 0.20 \text{ atm}$ $p_{A2} = 0 \text{ (pure gas B)}$

$$y_{A1} = p_{A1}/P$$
 $y_{A2} = 0$
= 0.20/2.0
= 0.10

From the Eq. (89): $N_A = k_y (y_{A1} - y_{A2})$

From Table 7.2-1, we have a value of k'_v which is related to k_v by:

$$k_{y}y_{BM} = k_{y}'$$

Find k_y by first calculating y_{BM} :

 $y_{B1} = 1.0 - 0.10 = 0.90$ $y_{B2} = 1.0 - 0 = 1.0$

$$y_{BM} = \frac{y_{B2} - y_{B1}}{\ln(y_{B2} / y_{B1})} = \frac{1.0 - 0.90}{\ln(1.0 / 0.90)} = 0.95$$

Then, from the previous Eq.,

$$k_{y} = \frac{k_{y}^{'}}{y_{BM}} = \frac{6.78 \ x \ 10^{-5}}{0.95} = 7.137 \ x \ 10^{-5} \ kgmole/m^{2} \cdot s \cdot mole \ frac.$$

Similarly, from Table 7.2-1, calculate k_G :

$$k_G y_{BM} P = k_y y_{BM}$$

$$k_{G} = \frac{k_{y}}{P} = \frac{7.137 \ x \ 10^{-5} \ kgmol/m^{2} \cdot s}{2 \ x \ 1.01325 \ x \ 10^{5} \ Pa} = 3.522 \ x \ 10^{-10} \ kgmole/m^{2} \cdot s \cdot Pa$$

$$k_{G} = \frac{k_{y}}{P} = \frac{7.137 \ x \ 10^{-5} \ kgmole/m^{2} \cdot s}{2.0 \ atm} = 3.569 \ x \ 10^{-5} \ kgmole/m^{2} \cdot s \cdot atm$$

Using Eq. (89) to calculate the flux N_A :

$$N_{A} = k_{y}(y_{A1} - y_{A2})$$

= 7.137 x 10⁻⁵ (0.10 - 0)
= 7.137 x 10⁻⁶ kgmole/m² · s

Also:

 $p_{A1} = 0.20 \text{ atm} = 0.20(1.01325 \text{ x } 10^5) = 2.0265 \text{ x } 10^4 \text{ Pa}$

Using Eq. (89) again to calculate the flux N_A :

$$N_{A} = k_{G}(p_{AI} - p_{A2})$$

= 3.522 x 10⁻¹⁰ kgmol/m² · s · Pa (2.0265 x 10⁴ - 0)Pa
= 7.137 x 10⁻⁶ kgmole/m² · s

 $N_{A} = k_{G}(p_{A1} - p_{A2})$ = 3.569 x 10⁻⁵ kgmol/m² · s · atm (0.20 - 0)atm = 7.138 x 10⁻⁶ kgmole/m² · s

Note that in this case, since the concentration were diluted, y_{BM} is close to 1.0 and k_v and k'_v differ very little.