AL MUSTADGAL UNIVERSITY

COLLEGE OF ENGINEERING AND TECHNOLOGIES
ALMUSTAQBAL UNIVERSITY

Digital Signal Processing (DSP)
 CTE 306

Lecture 8

- Periodic \& Aperiodic Signals -
(2023-2024)
Dr. Zaidoon AL-Shammari
Lecturer / Researcher
zaidoon.waleed@mustaqbal-college.edu.iq

Classification of Signals

One of the most important classify of a signals are:

- Periodic signals.
- Non periodic signals.
- Real numbers are the numbers that we normally use and apply in realworld applications.
- Real Numbers include:
* Whole Numbers (like 0, 1, 2, 3, 4, etc)
* Rational Numbers (like 3/4, 0.125, 0.333, 1.1, etc)
* Irrational Numbers (like $\pi, \sqrt{ } 2$, etc)
- Real Numbers can also be positive, negative or Zero.

Periodic Signals - Continuous time

- A continuous-time signal, $x(t)$ is a periodic signal if $x(t+n T)=x(t)$, where T is the period of the signal and n is an integer.
- Sinusoidal, square and triangular waves are periodic signals.
- For $\mathrm{x}(\mathrm{t})=\mathrm{x}_{1}(\mathrm{t})+\mathrm{x}_{2}(\mathrm{t})$, where $\mathrm{x}_{1}(\mathrm{t})$ and $\mathrm{x}_{2}(\mathrm{t})$ are two periodic signals with fundamental T_{1} and T_{2} respectively, $x(t)$ is a periodic signal if $T_{1} / T_{2}=$ a rational number.
- The fundamental period, T for $x(t)$ is the least common multiples (LCM) of T_{1} and T_{2}.

Least Common Multiples (LCM)

- The smallest positive number that is a multiple of two or more numbers.
- The multiples of 4 are: $4,8,12,16,20,24,28,32,36,40,44, \ldots$
- The multiples of 5 are: $5,10,15,20,25,30,35,40,45,50, \ldots$
- So, the common multiples of 4 and 5 are: 20,40 , (and 60,80 , etc \ldots, too).
- The smallest of the common multiples is 20 , so the least common multiple (LCM) of 4 and 5 is 20 .

Periodic Signals - Discrete time

A discrete-time signal may always be classified as either being periodic or aperiodic. A signal $\mathrm{x}(\mathrm{n})$ is said to be periodic if, for some positive real integer N,
$x(n)=x(n+N)$ for all n.

This is equivalent to saying that the sequence repeats itself every N samples. If is not satisfied for any integer $\mathrm{N}, \mathrm{x}(\mathrm{n})$ is said to be an aperiodic signal.
The sinusoidal signal of the form
$\mathrm{x}(n)=A \sin 2 \pi f$ on
Is periodic when $f 0$ is a rational number, that is, if $f 0$ can be expressed as

$$
f_{0}=\frac{k}{N}
$$

Where k and N are integers

Example

Determine whether each of the following signal is periodic. If a signal is periodic, determine its fundamental period.

$$
x(t)=\cos (t+\pi / 4)
$$

Sol:
$x(t)=\cos (t+\pi / 4)$ is in the form
$A \cos \left(2 \pi f_{0} t\right)$
Where f_{0} is the fundamental frequency.
In this case, $f_{0}=1 /(2 \pi)$.
Therefore, the fundamental frequency, $\mathrm{T}_{0}=1 / \mathrm{f}_{0}=2 \pi$

Example

Determine whether or not the following signals are periodic. In case a signal is periodic, specify the fundamental frequency.

$$
x(t)=8 \sin (0.8 \pi t+\pi / 4)+5 \cos (0.6 \pi t+\pi / 6)
$$

$\mathrm{W}_{1}=0.8 \pi \Rightarrow \mathrm{~T}_{1}=2 \pi / \mathrm{W}_{1} \Rightarrow 2 \pi / 0.8 \mathrm{p} \Rightarrow 5 / 2$
$\mathrm{W}_{2}=0.8 \pi \Rightarrow \mathrm{~T}_{2}=2 \pi / \mathrm{W}_{2} \Rightarrow 2 \pi / 0.6 \pi \Rightarrow 10 / 3$
$\mathrm{T}_{1} / \mathrm{T}_{2}=5 / 2 * 3 / 10=3 / 4 \Rightarrow$ Rational Number \Rightarrow Periodic.
$3 \mathrm{~T}_{2}=4 \mathrm{~T}_{1}=\mathrm{T}$
$\mathrm{T}=3 \mathrm{~T}_{2} \Rightarrow 3 * 10 / 3 \Rightarrow 10 \mathrm{Sec}$.
$\mathrm{T}=4 \mathrm{~T}_{1} \Rightarrow 4 * 5 / 2 \Rightarrow 10 \mathrm{Sec}$.
The fundamental frequency, T_{0} is the least common multiples (LCM) which is 10 seconds.

Example

Determine whether or not the following signals are periodic. In case a signal is periodic, specify the fundamental frequency.

$$
x(t)=\cos (\pi / 3) t+\sin (\pi / 4) t
$$

Sol:

This is the sum of two functions that are both periodic.
Their fundamental periods are $\mathrm{T}_{1}=6$ seconds and $\mathrm{T}_{2}=8$ seconds respectively.
$\mathrm{T} 1 / \mathrm{T} 2=6 / 8$ is a rational number.

Therefore $\mathrm{x}(\mathrm{t})$ is a periodic signal.

The fundamental frequency, T_{0} is the least common multiples (LCM) which is 24 seconds.

Is $x(n)=\cos \left(\frac{\pi n}{8}\right)$ periodic? If so, what is the period?
Sol: The sequence can be expressed as

$$
x(n)=\cos \left(2 \pi \frac{1}{16} n\right)
$$

So in this case, $\mathrm{fo}=1 / 16$ is a rational number and the sinusoidal sequence is periodic with a period $\mathrm{N}=16$.

Example

Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its fundamental period.

$$
x[n]=e^{j(\pi / 4) n}
$$

Sol:

$$
x[n]=e^{j\left(\frac{\pi}{(}\right) n}=e^{j 2 \pi f 0 n} \quad \rightarrow \quad 2 \pi f_{0}=\frac{\pi}{4}
$$

Since $f \mathrm{o}=1 / 8$ is a rational number, $\mathrm{x}[\mathrm{n}]$ is periodic, the fundamental period is $\mathrm{N}=8$

Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its fundamental period.

$$
x[n]=\cos \frac{\pi}{3} n+\sin \frac{\pi}{4} n
$$

Sol:

$$
\begin{array}{lll}
x_{1}[n]=\cos \frac{\pi}{3} n & \rightarrow & 2 \pi f_{0}=\frac{\pi}{3} \\
x_{2}[n]=\cos \frac{\pi}{4} n & \rightarrow & 2 \pi f_{0}=\frac{\pi}{4}
\end{array}
$$

Since $f 1=1 / 6$ is a rational number, $x 1[\mathrm{n}]$ is periodic, the fundamental period is $\mathrm{N} 1=6$, and Since $f 2=1 / 8$ is a rational number,
$\mathrm{x}[\mathrm{n}]$ is periodic, the fundamental period is $\mathrm{N}=8$. Thus, $\mathrm{x}[\mathrm{n}]$ is periodic and its fundamental period is given by the least common multiple of 6 and 8 , that is $\mathrm{N}=24$.

Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its fundamental period.

$$
x[n]=\cos \frac{1}{4} n
$$

Sol:

$$
x[n]=\cos { }_{-}^{1} n \quad \rightarrow \quad 2 \pi f_{0}=\frac{1}{4}
$$

Since $f \mathrm{o}=1 / 8 \pi$ is not a rational number, $\mathrm{x}[\mathrm{n}]$ is aperiodic.

AL- MUSTAQBAL UNIVERSITY COMPUTER TECHNIQUES ENGINEERING

Al-Mustaqbal
University

