Vectors

Scalars: a quantity that states only an amount.
For example, temperature is $5^{\circ} \mathrm{C}, 12$ eggs.
Vectors: a quantity specified by both magnitude and direction.
For example, vectors can be used to supply travelling instructions. If a pilot is told "fly 20 kilometers due south", he is being given a displacement vector to follow, its magnitude is 20 kilometers and its direction is south.

Vectors: magnitude and direction. Vectors represented by arrows. Length of arrows is proportional to its magnitude.

Example:

If it is half as far from baker to chester as from aeme to dunsville. Describe the displacement vector from baker to chester?

Sol.: displacement: 100 Km , east.

Polar notation: defining a vector by its angle and magnitude.
v: magnitude.
θ : vector.
Written as $\mathrm{V}=(\mathrm{v}, \theta)$

Example: write the velocity vector of car in polar notation for the following figure.

Solution:
Since $V=(v, \theta)$
Hence $V=\left(5 \mathrm{~m} / \mathrm{s}, 135^{\circ}\right)$

Rectangular notation:

v_{x} : horizontal component
v_{y} : vertical component
Written as $V=\left(\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}\right)$

Example: what is the velocity vector in rectangular notation for the figure below?

Solution:
$\mathrm{V}=\left(\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}\right)$
$\mathrm{V}=(17,-13) \mathrm{m} / \mathrm{s}$.

Adding and subtracting vectors by components:

- Add (or subtract) each component separately.
$A+B=\left(A_{x}+B_{x}, A_{y}+B_{y}\right)$
$A-B=\left(A_{x}-B_{x}, A_{y}-B_{y}\right)$
Where:
A, B : vectors.
$\mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}$: A components.
$\mathrm{B}_{\mathrm{x}}, \mathrm{B}_{\mathrm{y}}: \mathrm{B}$ components.

Example: the boat has the velocity A in still water. Calculate its velocity as the sum of A and the velocity B of the river's current?

Solution:
$\mathrm{V}=\mathrm{A}+\mathrm{B}$
$V=(3,4) \mathrm{m} / \mathrm{s}+(2,-1) \mathrm{m} / \mathrm{s}$
$\mathrm{V}=(3+2,4+(-1)) \mathrm{m} / \mathrm{s}$
$\mathrm{V}=(5,3) \mathrm{m} / \mathrm{s}$.

Multiplying rectangular vectors by a scalar:

- Multiply each component by scalar.
- Positive scalar does not affect direction.
$\mathrm{Sr}=\left(\mathrm{Sr}_{\mathrm{x}}, \mathrm{Sr}_{\mathrm{y}}\right)$
Where:
S: scalar.
r: vector.
$\mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}}$: r components.

Example: what is the displacement of the car after 5.0 seconds for the figure below?

Solution:
Since $V=\frac{\Delta X}{t}$
Hence $\Delta \mathrm{X}=\mathrm{t} . \mathrm{V}$

$$
\begin{aligned}
& =(5.0 \mathrm{~s})(12,15) \mathrm{m} / \mathrm{s} \\
& =(5.0)(12),(5.0)(15) \\
& =(60,75) \mathrm{m}
\end{aligned}
$$

Multiplying polar vectors by a scalar:

- Multiplying polar vector by positive scalar:
-Multiplying vector's magnitude by scalar.
-Angle unchanged.
$\mathrm{SV}=\mathrm{S}(\mathrm{v}, \theta)$
$S V=(S v, \theta)$, if S positive.

Example: what is the displacement vector if the car travels three times as far as the displacement in the figure below?

Solution:
Since $\operatorname{SV}=(S v, \theta)$
Hence $3 \mathrm{u}=\left(3 * 50,30^{\circ}\right)$

$$
3 \mathrm{u}=\left(150 \mathrm{~km}, 30^{\circ}\right)
$$

Notice that the direction still the same only the magnitude has changed.

- Multiplying polar vector by negative scalar:

Use absolute value and reverse direction.
$\mathrm{SV}=\mathrm{S}(\mathrm{v}, \theta)$
$S V=(|S| v, \theta+180)$, if S negative.

Example: what is -3 u if u equals $\left(3 \mathrm{~m}, 30^{\circ}\right)$
Solution:

$$
\begin{aligned}
& \text { Since } S V=S(v, \theta) \\
& S V=(|S| v, \theta+180) \\
& \text { Hence }-3 u=(|-3| * 3,30+180) \\
&-3 u=\left(9 \mathrm{~m}, 210^{\circ}\right)
\end{aligned}
$$

Converting vectors from polar to rectangular notation:

$(\mathrm{r}, \theta) \xrightarrow{\text { convert }}\left(\mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}}\right)$
$\mathrm{r}_{\mathrm{x}}=\mathrm{r} \cos \theta$
$r_{y}=r \sin \theta$
where
r: magnitude.
θ : angle.

$r_{x}+r_{y}$:components of vector.

Example: convert the following polar coordinates into rectangular coordinates, ($4, \frac{\pi}{3}$) ?

Solution:
$r_{x}=r \cos \theta=4 \cos \frac{\pi}{3}=4\left(\frac{1}{2}\right)=2$
$r_{y}=r \sin \theta=4 \sin \frac{\pi}{3}=4\left(\frac{\sqrt{3}}{2}\right)=2 \sqrt{3}$
hence $\left(r_{x}, r_{y}\right)=(2,2 \sqrt{3})$

Converting vectors from rectangular to polar notation:

$\left(\mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}}\right) \xrightarrow{\text { convert }}(\mathrm{r}, \theta)$
$\mathrm{r}=\sqrt{ }\left(\mathrm{r}_{\mathrm{x}}{ }^{2}+\mathrm{r}_{\mathrm{y}}{ }^{2}\right)$
$\theta=\tan ^{-1}\left(\frac{\mathrm{ry}}{\mathrm{rx}}\right)$

Example: convert the following rectangular coordinates to polar coordinates, $(2,2)$? Solution:
$\left(\mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}}\right)=(2,2)$
$r=\sqrt{ }\left(r_{x}^{2}+r_{y}^{2}\right)$
$r=\sqrt{ }\left(2^{2}+2^{2}\right)$
$\mathrm{r}=\sqrt{ } 8=2.83$
$\theta=\tan ^{-1}\left(\frac{\mathrm{ry}}{\mathrm{rx}}\right)=\tan ^{-1}\left(\frac{2}{2}\right)=\tan ^{-1}(1)=45^{\circ}$
hence $(2,2)=\left(2.83,45^{\circ}\right)$

Example: for the figure below, what is the car's displacement (r) in polar notation?
Solution:
$r=\sqrt{ }\left(r_{x}{ }^{2}+r_{y}{ }^{2}\right)$
$r=\sqrt{ }\left(-40^{2}+30^{2}\right)=\sqrt{ }(2500)=50 \mathrm{Km}$
$\alpha=\tan ^{-1}\left(\frac{\mathrm{ry}}{\mathrm{rx}}\right)=\tan ^{-1}\left(\frac{30}{-40}\right)=-36.9^{\circ}$
$\theta=-36.9^{\circ}+180=143^{\circ}$
hence
$(-40,30) \longrightarrow\left(50 \mathrm{Km}, 143^{\circ}\right)=\mathrm{r}(\mathrm{r}, \theta)$

Example: you are told to drive 3.5 Km at 42.0° then drive as directed by a vector of $(4,-3) \mathrm{Km}$. what is your resulting displacement in rectangular coordinates? In polar notation?

Solution:
First we need to convert $\left(3.5,42^{\circ}\right)$ to rectangular coordinates
$\mathrm{A}_{\mathrm{x}}=\mathrm{A} \cos \theta$
$\mathrm{A}_{\mathrm{x}}=3.5 \cos 42^{\circ}=2.6 \mathrm{Km}$
$A_{y}=A \sin \theta$
$\mathrm{A}_{\mathrm{y}}=3.5 \sin 42^{\circ}=2.34 \mathrm{Km}$
Hence
$\mathrm{A}=\left(\mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}\right)=(2.6,2.34) \mathrm{Km}$
Since

$B=\left(B_{x}, B_{y}\right)=(4,-3) \mathrm{Km}$
$\mathrm{C}=\mathrm{A}+\mathrm{B}=\left(\mathrm{A}_{\mathrm{x}}+\mathrm{B}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}+\mathrm{B}_{\mathrm{y}}\right)$

$$
=(2.6+4,2.34+(-3))=(6.6,-0.66) \mathrm{Km}
$$

Now we need to convert rectangular coordinates $(6.6,0.66) \mathrm{Km}$ into polar coordinates

$$
\begin{aligned}
& r=\sqrt{ }\left(r_{x}^{2}+r_{y}^{2}\right) \\
& r=\sqrt{ }\left(6.6^{2}+(-0.66)^{2}\right)=\sqrt{ }(43.446)=6.6 \\
& \alpha=\tan ^{-1}\left(\frac{\mathrm{ry}}{\mathrm{rx}}\right)=\tan ^{-1}\left(\frac{-0.66}{6.6}\right) \\
& \alpha=-5.71^{\circ} \\
& \theta=\alpha+360=-5.71+360=354.3^{\circ} \\
& C=(r, \theta)=\left(6.6 \mathrm{Km}, 354.3^{\circ}\right)
\end{aligned}
$$

