Matrices

1. Entering matrices

Entering matrices into Matlab is the same as entering a vector, except each row of elements is separated by a semicolon (;) or a return:

$$
\text { >>B = [1 } 23 \text { 4; } 5678 ; 91011 \text { 12] }
$$

$$
\begin{array}{rccc}
B= & & & \\
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}
$$

Alternatively, you can enter the same matrix as follows:

```
>>B = [1 12 3 4
```

5678
91011 12]
$B=$
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
$\begin{array}{llll}5 & 6 & 7 & 8\end{array}$
$\begin{array}{llll}9 & 10 & 11 & 12\end{array}$
Note how the matrix is defined, using brackets and semicolons to separate the different rows.

2. Transpose

The special character prime ' denotes the transpose of a matrix e.g.

```
>> \(A=[123 ; 456 ; 789]\)
A =
    123
    456
    \(\begin{array}{lll}7 & 8 & 9\end{array}\)
    >> \(B=A^{\prime}\)
B =
    147
    258
    369
```


3. Matrix operations

3.1 Addition and subtraction

Addition and subtraction of matrices are denoted by + and - . This operations are defined whenever the matrices have the same dimensions.

For example: If A and B are matrices, then Matlab can compute A+B and A-B when these operations are defined.

```
>> \(A=\left[\begin{array}{lll}1 & 2 ; 4 & 5 \\ 6 ; 7 & 8 & 9\end{array}\right]\)
A =
    123
    456
    \(\begin{array}{lll}7 & 8 & 9\end{array}\)
>> \(B=\left[\begin{array}{llllll}1 & 1 & 1 ; 2 & 2 & 2 ; 3 & 3\end{array}\right]\)
B =
    111
    222
    \(3 \quad 3 \quad 3\)
>> C = 1 2;3 4;5 6]
C =
    12
    34
    56
```

>> A+B
ans =
$\begin{array}{lll}2 & 3 & 4\end{array}$
$\begin{array}{lll}6 & 7 & 8\end{array}$
$\begin{array}{lll}10 & 11 & 12\end{array}$
$\gg \mathrm{A}+\mathrm{C}$
??? Error using ==>+
Matrix dimensions must agree.
Matrices can be joined together by treating them as elements of vectors:
$\gg D=\left[\begin{array}{ll}A B]\end{array}\right.$
D =
$\begin{array}{llllll}1 & 2 & 3 & 1 & 1 & 1\end{array}$
$\begin{array}{llllll}4 & 5 & 6 & 2 & 2 & 2\end{array}$
$\begin{array}{llllll}7 & 8 & 9 & 3 & 3 & 3\end{array}$
>>A-2.3
ans =
-1.3000 -0.3000 0.7000
$1.7000 \quad 2.7000 \quad 3.7000$
$4.7000 \quad 5.7000 \quad 6.7000$

3.2 Matrix multiplication

Matrix operations simply act identically on each element of an array. We have already seen some vector operations, namely + and -, which are defined for vectors the same as for matrices. But the operators $*, /$ and \wedge have different matrix interpretations.

```
>> \(A=[1,2,3 ; 4,5,6 ; 7,80]\)
A =
    123
    456
    780
>> \(\mathrm{B}=[1,4,7 ; 2,5,8 ; 3,6,0]\)
B =
    147
    258
    360
>> \(A^{*} B\)
ans =
    \(\begin{array}{lll}14 & 32 & 23\end{array}\)
    \(\begin{array}{lll}32 & 77 & 68\end{array}\)
    \(\begin{array}{lll}23 & 68 & 113\end{array}\)
```


3.3 Matrix division

To recognize how the two operator / and \backslash work ;
$\mathrm{X}=\mathrm{A} \backslash \mathrm{B}$ is a solution to $\mathrm{A} * \mathrm{X}=\mathrm{B}$
$\mathrm{X}=\mathrm{B} / \mathrm{A}$ is a solution to $\mathrm{X} * \mathrm{~A}=\mathrm{B}$
>>A=[1,2,3;4,5,6;7,8 0]; B=[1,4,7;2,5,8;3,6,0];
>>X=A\B
ans =
-0.3333 -3.3333 -5.3333
$\begin{array}{llll}0.6667 & 3.6667 & 4.6667\end{array}$
$0 \quad-0.00001 .0000$
$\gg X=B / A$
X =
$\begin{array}{lll}3.6667 & -0.6667 & 0.0000\end{array}$
$3.3333-0.33330 .0000$
4.0000 -2.0000 1.0000

3.4 Element-wise operation

You may also want to operate on a matrix element-by-element. To get element-wise behavior appropriate for an array, precede the operator with a dot. There are two important operators here .* and ./
A.*B is a matrix containing the elements of A multiplied by the corresponding elements of B. Obviously A and B must have the same size. The ./ operation is similar but does a division. There is a similar operator.$^{\wedge}$ which raises each element of a matrix to some power.

```
>> \(\mathrm{E}=\left[\begin{array}{ll}1 & 2 ; 34\end{array}\right]\)
\(\mathrm{E}=\)
    12
    34
>> \(F=[23 ; 4\) 5]
F=
    23
    45
\(\gg \mathrm{G}=\mathrm{E} .{ }^{*} \mathrm{~F}\)
G =
    26
    1220
```

If you have a square matrix, like E , you can also multiply it by itself as many times as you like by raising it to a given power.

```
>>E^3
```

ans =
$37 \quad 54$
81118

If wanted to cube each element in the matrix, just use the element-by-element cubing.

```
>> E.^3
```

ans =
18
2764
>> $A=\left[\begin{array}{ll}123 ; 4 & 5 ; 789\end{array}\right] ;$
1./A
ans =
$\begin{array}{lll}1.0000 & 0.5000 & 0.3333\end{array}$
$0.2500 \quad 0.2000$
0.1667
$\begin{array}{lll}0.1429 & 0.1250 & 0.1111\end{array}$

```
\(\gg\) A./A
ans =
    111
    111
    111
```

Most elementary functions, such as sin, exp, etc., act element-wise.

```
\(\gg \cos \left(A^{*} \mathrm{pi}\right)\)
```

ans =
$\begin{array}{lll}-1 & 1 & -1\end{array}$
1 -1 1
$-1 \quad 1 \quad-1$
$\gg \exp (A)$
ans =
$1.0 \mathrm{e}+003$ *
$0.0027 \quad 0.0074 \quad 0.0201$
$0.0546 \quad 0.1484 \quad 0.4034$
$1.0966 \quad 2.9810 \quad 8.1031$

4. The Colon Operator

The colon operator can also be used to create a vector from a matrix. Define:
>> A = [1 2 3;4 5 6;7 8 9];
$\gg B=A(:, 1)$
B =
1
4
7
Note that the expressions before the comma refer to the matrix rows and after the comma to the matrix columns.

```
>> B=A(:,2)
B =
    2
        5
        8
>> B=A(1,:)
B =
    1 2
```

The colon operator is also useful in extracting smaller matrices from larger matrices. If the 4×3 matrix C is defined by


```
C =
    \(\begin{array}{lll}-1 & 0 & 0\end{array}\)
    110
    1 -1 0
    \(0 \quad 0\)
>> D=C(:,2:3)
```

creates the following 4×2 matrix:
D =
00
10
-1 0
02
>> D=C(3:4,1:2)

Creates a 2×2 matrix in which the rows are defined by the 3rd and 4th row of C and the columns are defined by the 1st and 2nd columns of the matrix, C .

D =
1 -1
00

5. Referencing elements

The colon is often a useful way to construct these indices.
>> A = [1 2 3;4 5 6;7 8 9];
>> A(:,3)=0
Evaluated the third column to zero.
A =
120
450
780
>> $A(:, 3)=[]$
Deleted the third column.
A =
12
45
78
>> $A(3,:)=[]$
Deleted the third row.
A =
12
45
$\gg A(: 3)=5$
Expand the matrix into 2×3 matrix, with a the values of the third column equal to 5 .
A =
125
455
$\gg A(3,:)=7: 9$
Expand the matrix into 3×3 matrix, with a values of the third column equal to $7,8,9$:
A =
125
455
$7 \quad 8 \quad 9$
An array is resized automatically if you delete elements or make assignments outside the current size. (Any new undefined elements are made zero.)
> $A(:, 5)=10$
Expand the matrix into 3×5 matrix, with a values of the fourth column equal to 0 and the last column equal to 10 :
$\mathrm{A}=$

1	2	5	0	10
4	5	5	0	10
7	8	9	0	10

6. Matrix Inverse

The function inv is used to compute the inverse of a matrix. Let, for instance, the matrix A be defined as follows:
$\gg A=\left[\begin{array}{lll}1 & 2 ; 4 & 5 ; 7 \\ \text { 6 10 }\end{array}\right]$
A =
123
456
$\begin{array}{lll}7 & 8 & 10\end{array}$
Then,
$\gg B=\operatorname{inv}(A)$
$B=$
-0.6667-1.3333 1.0000
-0.6667 3.6667-2.0000
1.0000 -2.0000 1.0000

The inverse of matrix A can be found by using either $\mathrm{A}^{\wedge}(-1)$ or $\operatorname{inv}(\mathrm{A})$.

211
122
212
\gg Ainv=inv(A)
Ainv =
2/3-1/3 0
2/3 2/3-1
-1 01
Let's verify the result of A*inv(A).
>> A*Ainv
ans =
100
010
001
Also let's verify the result of $\operatorname{inv}(A) * A$
>> Ainv*A
ans =
100
010
001
Note: There are two matrix division symbols in Matlab, / and \backslash in which
$\mathbf{a} / \mathbf{b}=\mathbf{a} * \operatorname{inv}(\mathbf{b})$
$\mathbf{a} \backslash \mathbf{b}=\operatorname{inv}(\mathbf{a}) * \mathbf{b}$.

7. Predefined Matrix

Sometimes, it is often useful to start with a predefined matrix providing only the dimension. A partial list of these functions is:
zeros: matrix filled with 0 .
ones: matrix filled with 1.
eye: Identity matrix.
Finally, here are some examples on this special matrices
>>A=zeros(2,3)
A =
000
000
>>B=ones $(2,4)$
B =
1111
1111
>>C=eye(3)
C =
100
010
001

8. Other Operations on Matrix

Define a matrix M and examine the effect of each command separately:
>>M=[23 0 3;16 85;13 2 4;1 10 7]
M =
2303
1685
$\begin{array}{lll}13 & 2 & 4\end{array}$
$\begin{array}{lll}1 & 10 & 7\end{array}$
>>length(M) number of rows in M
4
>>size(M) matrix size (rows, columns)
43
\gg find(M>7) finds indices of elements greater than 7 .
1
2
3
6
8
>>Sum(M) sum of elements in each column
$\begin{array}{lll}53 & 20 & 19\end{array}$
$\gg \max (\mathrm{M})$ maximum element in each column.

$23 \quad 10$
 7

$\gg \min (\mathrm{M})$ minimum element in each column

```
1 0 3
>>mean(M) mean of elements in each column
13.2500 5.0000 4.7500
>>Sort(M) sorts each column prod(M) product of elements in each column
    1 0 3
    13 2 4
    16 8
    23
>>all(M) 1 if all elements nonzero, 0 if any element nonzero
    1 0 1
>>abs(M) vector with absolute value of all elements
    23 0 3
    16 8
    13 2 4
    1 10 7
```


Exercise 1:

Start with a fresh M-file editing window. Write a code to convert the temperature in Celsius into ${ }^{\circ} \mathrm{F}$ and then into ${ }^{\circ} \mathrm{R}$ for every temperature from 0 increasing 15 to $100^{\circ} \mathrm{C}$. Combine the three results into one matrix and display them as a table.

Solution:

tc $=[0: 15: 100] ; \%$ tc is temperature Celsius, tf is temp deg F ,
tf = 1.8. ${ }^{*}$ tc + 32; \% and tr is temp deg Rankin.
tr = tf + 459.69;
t = [tc',tr',tr'] \% combine answer into one matrix

The results will be
$\mathbf{t}=$

0	32.0000	491.6900
15.0000	59.0000	518.6900
30.0000	86.0000	545.6900
45.0000	113.0000	572.6900
60.0000	140.0000	599.6900
75.0000	167.0000	626.6900
90.0000	194.0000	653.6900

Exercise 2:

Use vectors with the aid of interp1 command to find the bubble point of ternary system (Ethanol $40 \mathrm{~mol} \%$, Water $20 \mathrm{~mol} \%$ and Benzene $40 \mathrm{~mol} \%$). Knowing that the vapor pressure for three components are calculated by:

Ethanol $\quad \mathrm{P}_{\mathrm{e}}^{\mathrm{o}}=\exp (18.5242-3578.91 /(\mathrm{T}-50.5))$
Water $\quad \mathrm{P}_{\mathrm{w}}^{\mathrm{o}}=\exp (18.3036-3816.44 /(\mathrm{T}-46.13))$
Benzene $\quad \mathrm{P}^{\mathrm{o}}{ }_{\mathrm{b}}=\exp (15.9008-2788.51 /(\mathrm{T}-52.36))$
Where
$\mathrm{K}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}}^{0} / \mathrm{P}_{\mathrm{t}}, \mathrm{P}_{\mathrm{t}}=760$, $\mathrm{y}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}} \times \mathrm{X}_{\mathrm{i}}$, At Bubble point $\sum \mathrm{yi}=\sum \mathrm{Ki} \times \mathrm{xi}=1$
Solution:
$\mathrm{Xe}=0.4$;
$X w=0.2 ;$
$\mathrm{Xb}=0.4$;
T=[60:5:100]+273.15;
$\mathrm{Pe}=\exp (18.5242-3578.91 . /(\mathrm{T}-50.5))$;
Pw=exp(18.3036-3816.44./(T-46.13));
$\mathrm{Pb}=\exp (15.9008-2788.51 . /(\mathrm{T}-52.36))$;
Ke=Pe/760;
Kw=Pw/760;
$\mathrm{Kb}=\mathrm{Pb} / 760$;
Ye=Ke*Хe;
Yw=Kw*Xw;
$\mathrm{Yb}=\mathrm{Kb}{ }^{*} \mathrm{Xb}$;
Ys=Ye+Yw+Yb;
A=[T',Ye',Yw',Yb',Ys']
TBp=interp1(Ys,T,1)
The output of the above code will be:

$$
A=
$$

333.1500	0.1850	0.0393	0.2060	0.4304
338.1500	0.2305	0.0494	0.2451	0.5250
343.1500	0.2852	0.0615	0.2899	0.6366
348.1500	0.3502	0.0761	0.3409	0.7672
353.1500	0.4271	0.0935	0.3987	0.9194
358.1500	0.5176	0.1141	0.4640	1.0958
363.1500	0.6235	0.1384	0.5373	1.2992
368.1500	0.7466	0.1668	0.6194	1.5328
373.1500	0.8890	0.2000	0.7107	1.7997

TBp =

355.4352

Practice Problems

1) Write a program to make a table of the physical properties for water in the range of temperatures from 273 to 323 K .

The Density : $\quad \rho=\mathbf{1 2 0 0 . 9 2} \mathbf{- 1 . 0 0 5 6} \mathbf{T}+\mathbf{0 . 0 0 1 0 8 4} \mathbf{T}^{\mathbf{2}}$
The conductivity: $K=\mathbf{0 . 3 4}+\mathbf{9 . 2 7 8} * \mathbf{1 0}^{-4} \mathbf{T}$
The Specific heat: $\mathbf{C}_{\mathbf{P}}=\mathbf{0 . 0 1 5 5 3 9}(\mathbf{T}-\mathbf{3 0 8 . 2})^{\mathbf{2}}+\mathbf{4 1 8 0 . 9}$
2) Define the 5×4 matrix, g.

$$
g=\left[\begin{array}{cccc}
0.6 & 1.5 & 2.3 & -0.5 \\
8.2 & 0.5 & -0.1 & -2.0 \\
5.7 & 8.2 & 9.0 & 1.5 \\
0.5 & 0.5 & 2.4 & 0.5 \\
1.2 & -2.3 & -4.5 & 0.5
\end{array}\right]
$$

Find the content of the following matrices and check your results for content using Matlab.
a) $\mathrm{a}=\mathrm{g}(:, 2)$
b) $\mathrm{a}=\mathrm{g}(4,:)$
c) $a=g(4: 5,1: 3)$
d) $a=g(1: 2: 5,:)$
e) $a=\operatorname{sum}(g)$
3) Given the arrays $x=\left[\begin{array}{ll}1 & 3\end{array}\right], y=\left[\begin{array}{ll}2 & 4 \\ 6\end{array}\right]$ and $A=\left[\begin{array}{lll}3 & 15 ; 597\end{array}\right]$, Calculate;
a) $x+y$
b) $x^{\prime}+y^{\prime}$
c) $\mathrm{A}-[\mathrm{x} ; \mathrm{y}]$
d) $[x ; y] . * A$
e) $\mathrm{A}-3$

