Lec._3

Convert Between Number Systems / التحويل بين أنظمة الأرقّام For example: (4) $)_{10}$ in binary is $(100)_{2}$.

Here, 4 is represented in the decimal number system, where we can represent the number using the digits from 0-9. However, in a binary number system, we use only two digits, such as 0 and 1.

Now, let's discuss how to convert 4 in binary number دعونا نناشش كيفية تحويل رقم \& الى النظام الثنائي. system

The following steps help to convert 4 in binary divide the number 4 by 2 . Use the integer quotient obtained in this step as the dividend for the next step.

Continue this step, until the quotient becomes 0 .

Dividend	Remainde \mathbf{r}	Rank	
$4 / 2=2$	0	2^{0}	Least Significant Bit (LSB)
$2 / 2=1$	0	2^{1}	
$1 / 2=0$	1	2^{2}	Most Significant Bit (MSB)
$(100)_{2 .}=(4)_{10}$			

For example: (61) ${ }_{10}$ How to convert in binary number system (? $)_{2}$.

Dividend	Remainder		Rank	To chech Convert binary to decimal
$61 / 2=30$	1	2^{0}	(LSB)	1X1
$30 / 2=15$	0	2^{1}		0X2
$15 / 2=7$	1	2^{2}		1X4
$7 / 2=3$	1	2^{3}		1X8
$3 / 2=1$	1	2^{4}		1X16
$1 / 2=0$	1	2^{5}	(MSB)	1 $\times 32$
				Sum all $=61$

Octal and hexadecimal Number System - Conversions,

Examples

Octal Every digit has to be converted to a 3-bit binary number. Thus, we get the binary equivalent of the number.
hexadecimal Every digit has to be converted to a 4-bit binary number. Thus, we get the binary equivalent of the number.

Let's understand this with the help of an example.
Example: Convert (16) 8 into a binary number. Then to hexadecimal
Solution: (16) 8 is an octal number.
With the above conversion, we can write
$1_{8}=001_{2}$ and $6_{8}=110_{2}$
Thus, $(16)_{8}=(001110)_{2}$
So $(16)_{8}=(0 \mathrm{E})_{16}$
Example: Convert (16) ${ }_{16}$ into a binary number. Then to octal
Solution: (16)16 is an hexadecimal number.
With the above conversion, we can write
$1_{16}=0001_{2}$ and $6_{16}=0110_{2}$

Thus, (16) ${ }_{16}=(00010110)_{2}$
So (16) ${ }_{16}=(26)_{8}$

Convert each hex digit to 4 binary digits and then convert each 3 binary digits to octal digits

قم بتحويل كل رقم سداسي عشري إلى ع أرقام ثنائية ثم قم بتحويل كل بّ أرقام ثنائية إلى أرقام ثماني

Conversion of Octal to Decimal Numbers

Converting octal to decimal is a simple process!
A number in the octal system is expanded with the base of eight, where each digit is multiplied with the power of 8 , based on its position.

After the octal is converted to decimal, it has a base of 10 .

Example: Convert (321)8 to decimal form.

$$
\begin{aligned}
(321)_{8} & =\left(3 \times 8^{2}\right)+\left(2 \times 8^{1}\right)+\left(1 \times 8^{0}\right) \\
& =(3 \times 64)+(2 \times 8)+(1 \times 1) \\
& =192+16+1=209_{10}
\end{aligned}
$$

Thus, (321) ${ }_{8}=(209)_{10}$

Conversion of Decimal to Octal Number

In this conversion, the decimal number is divided by 8 each time a reminder is obtained from the previous digit. Let us understand this conversion with the help of an example.

Example: Convert 41610 to octal.
Divide 416 by the octal base number, 8 .

Division by 8	Quotient	Remainder
$416 \div 8$	52	0
$52 \div 8$	6	4
$6 \div 8$	0	6

We stop when the quotient value becomes 0 . By writing the remainders in reverse order, we get the equivalent octal number. Thus, the octal representation of 416_{10} is 6408 .

Conversion of Octal to Hexadecimal Numbers

The simplest way is to first convert the octal number to a decimal, and then the decimal to a hexadecimal number.

Let us understand octal to hexadecimal conversion with the help of an example.

Example: Convert (70) 8 to hexadecimal.

Step 1: Octal to Decimal

$(70)_{8}=\left(7 \times 8^{1}\right)+\left(0 \times 8^{0}\right)$
$(70)_{8}=(56)_{10}$

Step 2: Decimal to hexadecimal

Now, we need to convert (56) 10 to a hexadecimal number.

Divide the number 56 by 16 until the number in the quotient value becomes 0 .

Write remainders in reverse order.

Therefore, $(70)_{8}=(38)_{16}$

Octal Multiplication Table

You can multiply octal numbers in two ways. One way is to convert octal to decimal: perform the decimal multiplication to get the product and convert the result back to octal. The second way is simply using the octal multiplication table.

Example:

\times	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{0}$	0	0	0	0	0	0	0	0
$\mathbf{1}$	0	1	2	3	4	5	6	7

$\mathbf{2}$	0	2	4	6	10	12	14	16
$\mathbf{3}$	0	3	6	11	14	17	22	25
$\mathbf{4}$	0	4	10	14	20	24	30	34
$\mathbf{5}$	0	5	12	17	24	31	36	43
$\mathbf{6}$	0	6	14	22	30	36	44	52
7	0	7	16	25	34	43	52	61

Facts about the Octal Number System

- In 1801, James Anderson criticized the French for basing the metric system on decimal arithmetic. He suggested the base 8 and he coined the term octal.
- The main advantage of using octal numbers is that it uses fewer digits than the decimal and hexadecimal number system. So, it has fewer computations and less computational errors.
- The octal number system is widely used in computer application sectors and digital numbering systems. The octal number is also used in the aviation sector in the form of a code.
- The octal system is similar to the hexadecimal system because they are both easily converted to binary, where octal is equal to three-digit binary and hexadecimal is equal to four-digit binary.

