CELL ATOM **EXPERIMENT** HELIX LABORATORY HEALTH BIO TECHNOLOGY DESIGN SAMPI MISTRY BIC JE TEST MOLECULE CHEMISTRY MODEL CHEMICAL LIFE BIOTECHNOLOGY Ш

The central dogma of Molecular Biology

A portion of DNA, called a gene , is transcribed into RNA. RNA is translated into proteins. Human genome contains about 35,000 genes

Nucleic acids

- Required for the storage and expression of genetic information.
- Two types:
- DNA (Deoxyribonucleic acid).
- RNA (Ribonucleic acid).
- Building blocks of nucleic acids are nuclueoside triphosphates
- (nucleotides).

Nucleotides

- Nucleotides are composed of:
- 1. Nitrogenous base:
- Purines: Adenine (A) and Guanine (G)
- Pyrimidines: Cytosine (C), Thymine (T) and Uracil (U)

- pentose with 5 carbon ring:
- a) Ribose (with –OH at C2).
- b) Deoxyribose.

Phosphate groups

- The sugar carbon numbers are primed (1'2'3' etc.), while the
- nitrogenous base atoms are unprimed.
- The nitrogenous base is bonded
- to C1' of sugar.
- The PO4 group is bonded to
- C3' or C5' of sugar.

Chemical structure of DNA & RNA

- The PO4 bridges the 3' and 5' positions of ribose sugar.
- • The PO4 and sugar bonding is the backbone of DNA structure.
- • The linkage between the nucleotides
- is called phosphodiester bond.

Function of nucleotides

- Polymers of nucleotides (as DNA or RNA) store and transfer genetic information.
- Free nucleotides and their derivatives perform various metabolic functions not related to genetic information.
- Other nucleotides: FAD, NAD, CoA.

The double helix DNA

- The structure of DNA was first determined by James Watson
- and Francis Crick in 1953.
- Commonly known as Watson-Crick structure

Features of Watson-Crick DNA

- Structure
- Two polynucleotide chains wind around a common axis to
- form a double helix.
- The two strands are anti-parallel (run in opposite direction).
- Each strand is a right-handed helix.
- The nitrogenous bases are in the center of the double helix
- and the sugar-phosphate chains are on the sides.

- The surface of the double helix contains 2 grooves: the major
- and minor grooves.
- Each base is hydrogen bonded to a base in the opposite strand
- to form a base pair (A-T and G-C), known as complementary
- base pairing.
- The helix has 10 base pairs (bp) per turn

Watson-Crick base pairs

- Adenine (A) =Thymine (T)
- Guanine (G)= Cytosine (C)
- In RNA, Thymine is replaced by Uracil (U)

Types of DNA structure

	B form DNA	A form DNA	Z form DNA
Helical sense	Right handed	Right handed	Left handed
Major groove	Present	Present	Absent
bp/helical tern	10.5	11	12
Glycosyl bond conformation	Anti	Anti	Anti (for pyrimidines) and syn (for Purines)
Helix rise/bp	3.4Å	2.6Å	3.7Å
Base tilt	6°	20°	7°
Structure			THE REAL