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Numerical Differentiation 

 

Numerical Differentiation is a method used to approximate the value of a derivative 

over a continuous region [a,b]. 

Let f(x) is a continuous function with step size h. There are forward, backward and 

centered difference methods to approximate the derivatives of f(x) at a point xi.  

 

5.1 Forward Difference Approximation of the First Derivative 

We know 
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Figure 5.1: Graphical representation of forward  

difference approximation of first derivative 

So if you want to find the value of  xf   at ixx  , we may choose another point 

'Δ' x  ahead as 1 ixx . This gives 
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Example 5.1 

The velocity of a rocket is given by   300,8.9
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Where ''ν  is given in m/s and ''t  is given in seconds. 

Use forward difference approximation of the first derivative of  tν  to calculate the 

acceleration at st 16 . Use a step size of st 2 . 
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The exact value of  16a  can be calculated by differentiating 
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The absolute relative true error is 

 100
Value True

Value eApproximat-Value True
t 100

674.29

475.30674.29



 %6993.2  
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5.2 Backward Difference Approximation of the First Derivative 

 We know 
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 If  'Δ' x  is chosen as a negative number, 
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 This is a backward difference approximation as you are taking a point backward 

from x . To find the value of  xf   at ixx  , we may choose another point 'Δ' x  

behind as 1 ixx .  This gives 
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Figure 5.2 Graphical representation of backward  

difference approximation of first derivative 
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Example 5.2 

The velocity of a rocket is given by 
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Use backward difference approximation of the first derivative of  tν  to calculate the 

acceleration at st 16 . Use a step size of st 2 . 

Solution 
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The absolute relative true error is 
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5.3 Central Difference Approximation of the First Derivative 

As shown above, both forward and backward divided difference approximation of the 

first derivative are accurate on the order of  xΔ0 . Can we get better approximations?  

Yes, another method to approximate the first derivative is called the Central 

difference approximation of the first derivative. 

From Taylor series 
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Subtracting equation (2) from equation (1) 
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Hence showing that we have obtained a more accurate formula as the error is of the 

order of  2
0 x . 

          

Figure 5.3 Graphical Representation of central  

difference approximation of first derivative. 
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Example 5.3 

The velocity of a rocket is given by 
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Use central divided difference approximation of the first derivative of  tν  to 

calculate the acceleration at st 16 .  Use a step size of st 2 . 

Solution 
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The absolute relative true error is 
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t  %070769.0  

The results from the three difference approximations are given in Table 1. 

Table 1 Summary of  16a  using different divided difference approximations. 

Type of Difference 

Approximation 

 16a  

 2/ sm  
%t  

Forward 

Backward 

Central 

30.475 

28.915 

29.695 

2.6993 

2.557 

0.070769 

 Clearly, the central difference scheme is giving more accurate results because the 

order of accuracy is proportional to the square of the step size.   
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5.4 Higher Order Derivatives  

 

Example: Second order derivative: 

Note that for the centered formulation, it is a derivation of a derivative: 
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I) Forward Difference Methods 

First Derivative 
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II) Backward Difference Methods 

First Derivative 
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Third Derivative 
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III) Central Difference Methods 

First Derivative 
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