Solving System of Linear Equations

6.1 Linear Equation

y = mx is an equation, in which variable y is expressed in terms of x and the constant m, is called Linear Equation. In Linear Equation exponents of the variable is always 'one'.

6.2 Linear Equation in n variables:

$$a_1x_1 + a_2x_2 + a_3x_3 + \dots + a_nx_n = b$$

Where $x_1, x_2, x_3, ..., x_n$ are variables and

 $a_1, a_2, a_{13}, \dots, a_n$ and b are constants.

6.3 System of Linear Equations:

A Linear System of m linear equations and n unknowns is:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

.....

.....

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

Where $x_1, x_2, x_3, ..., x_n$ are variables or unknowns and a's and b's are constants.

6.4 Augmented Matrix

System of linear equations:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_{31} = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_{31} = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_{31} = b_3$$

Can be written in the form of matrices product

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Or we may write it in the form AX=b,

Where A=
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, X= $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, b= $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$

Augmented matrix is
$$[A:b] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix}$$

Example 6.1:

Write the matrix and augmented form of the system of linear equations

$$3x - y + 6z = 6$$

$$x + y + z = 2$$

$$2x + y + 4z = 3$$

Solution: Matrix form of the system is

$$\begin{bmatrix} 3 & -1 & 6 \\ 1 & 1 & 1 \\ 2 & 1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \\ 3 \end{bmatrix}$$

Augmented form is

$$[A:b] = \begin{bmatrix} 3 & -1 & 6 & 6 \\ 1 & 1 & 1 & 2 \\ 2 & 1 & 4 & 3 \end{bmatrix}.$$

6.5 Methods for Solving System of Linear Equations

- 1. Gaussian Elimination Method
- 2. Gauss -Jorden Elimination Method

6.5.1 Gaussian Elimination.

Gaussian elimination is a general method of finding possible solutions to a linear system of equations.

Gaussian Elimination Method

Step 1. By using elementary row operations

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & A_{12} & A_{13} & B_1 \\ 0 & 1 & A_{23} & B_2 \\ 0 & 0 & 1 & B_3 \end{bmatrix}$$

Step 2. Find solution by back – substitutions.

Example 6.2:

Solve the system of linear equations by Gaussion-Elimination method

$$\begin{cases} x_1 + x_2 + x_3 = 3\\ 2x_1 - x_2 - 2x_3 = 6\\ 4x_1 + 2x_2 + 3x_3 = 7 \end{cases}$$

Solution:

Step 1.

Augmented matrix is	
$\begin{bmatrix} 1 & 1 & 1 & 3 \end{bmatrix}$	$R_2 = r_2 - 2r_1 R_3 = r_3 - 4r_1$
$ \begin{bmatrix} 1 & 1 & 1 & 3 \\ 2 & -1 & -2 & 6 \\ 4 & 2 & 3 & 7 \end{bmatrix} $	$R_3 = r_3 - 4r_1$
4 2 3 7	
0 -3 -4 0	$R_3 = 3r_3 - 2r_2$
$ \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & -3 & -4 & 0 \\ 0 & -2 & -1 & -5 \end{bmatrix} $	
$\begin{bmatrix} 1 & 1 & 1 & 3 \end{bmatrix}$	
0 -3 -4 0	$R_2 = -r_2$
$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & -3 & -4 & 0 \\ 0 & 0 & 5 & -15 \end{bmatrix}$	$R_2 = -r_2$ $R_3 = \frac{r_3}{5}$
1 1 1 3	
$ \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 3 & 4 & 0 \\ 0 & 0 & 1 & -3 \end{bmatrix} $	
$\begin{bmatrix} 0 & 0 & 1 -3 \end{bmatrix}$	

Equivalent system of equations form is:

Step 2. Back Substitution

$$x_1 + x_2 + x_3 = 3$$
 $x_3 = -3$
 $3x_2 + 4x_3 = 0$ \Rightarrow $x_2 = -4x_3/3 = 12/3 = 4$
 $x_3 = -3$ $x_1 = 3 - x_2 - x_3 = 3 - 4 + 3 = 2$

Solutions are $x_1 = 2$, $x_2 = 4$, $x_3 = -3$

Example 6.3:

For the below figure calculate the values of the unknown flow rates F_1 , F_2 and F_3 by using Gaussion-Elimination method

Component material balance gives these three equations of three variables

$$F_1 + F_2 + F_3 = 1000$$

 $0.99F_1 + 0.05F_2 + 0F_3 = 400$
 $0.01F_1 + 0.92F_2 + 0.1F_3 = 400$

Augmented matrix is

$$\begin{bmatrix} 1 & 1 & 1 & 1000 \\ 0.99 & 0.05 & 0 & 400 \\ 0.01 & 0.92 & 0.1 & 400 \end{bmatrix} \qquad \begin{array}{l} R_2 = r_2 - (0.99/1) \times r_1 \\ R_3 = r_3 - (0.01/1) \times r_1 \\ \end{array}$$

$$\begin{bmatrix} 1 & 1 & 1000 \\ 0 & -0.94 & -0.99 & -590 \\ 0 & 0.91 & 0.09 & 390 \end{bmatrix} \qquad \begin{array}{l} R_3 = r_3 - (0.91/(-0.94)) r_2 \\ \end{array}$$

$$\begin{bmatrix} 1 & 1 & 11000 \\ 0 & -0.94 & -0.99 & -590 \\ 0 & 0 & -0.8684 & -181.17 \end{bmatrix} \qquad \begin{array}{l} R_2 = r_2/(-0.94) \\ R_3 = r_3/(-0.8684) \\ \end{array}$$

$$\begin{bmatrix} 1 & 1 & 11000 \\ 0 & 1 & 1.0532 & 627.6596 \\ 0 & 0 & 1 & 208.6253 \end{bmatrix}$$

Equivalent system of equations form is:

$$F_1 + F_2 + F_3 = 1000$$

$$F_2 + 1.0532F_3 = 627.6596$$

$$F_3 = 208.6253$$

Step 2. Back Substitution

$$F_3 = 208.6253$$

$$F_2 = 627.6596 - 1.0532F_3 = 627.6596 - 1.0532 \times 208.6253 = 407.9354$$

$$F_1 = 1000 - F_2 - F_3 = 1000 - 208.6253 - 407.9354 = 383.4393$$

6.5.2 Gauss - Jorden Elimination Method

Gauss - Jorden Method

By using elementary row operations

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & B_1 \\ 0 & 1 & 0 & B_2 \\ 0 & 0 & 1 & B_3 \end{bmatrix}$$

Example 6.4:

Solve the system of linear equations by Gauss-Jorden elimination method

$$x_1 + x_2 + 2x_3 = 8$$

$$-x_1 - 2x_2 + 3x_3 = 1$$

$$3x_1 - 7x_2 + 4x_3 = 10$$

Solution:

Augmented matrix is

$$\begin{bmatrix} 1 & 1 & 2 & 8 \\ -1 & -2 & 3 & 1 \\ 3 & -7 & 4 & 10 \end{bmatrix} \qquad \begin{array}{c} R_2 = r_2 + r_1 \\ R_3 = r_3 - 3r_1 \end{array}$$

$$\begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & -1 & 5 & 9 \\ 0 & -10 & -2 & -14 \end{bmatrix} \qquad \begin{array}{c} R_2 = -r_2 \\ R_3 = r_3 - 10r_2 \end{array}$$

$$\begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & 1 & -5 & -9 \\ 0 & 0 & -52 & -104 \end{bmatrix} \qquad R_3 = -r_3/52$$

$$\begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & 1 & -5 & -9 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad \begin{matrix} R_1 = r_1 - 2r_3 \\ R_2 = r_2 + 5r_3 \end{matrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad R_1 = r_1 - r_2$$

$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Equivalent system of equations form is:

$$x_1 = 3$$

$$x_2 = 1$$

$$x_3 = 2$$

is the solution of the system.

Example 6.5:

Total and component material balance on a system of distillation columns gives the flowing equations:-

$$F_1 + F_2 + F_3 + F_4 = 1690$$

 $0.4F_1 + 0.15F_2 + 0.25F_3 + 0.2F_4 = 412.5$
 $0.25F_1 + 0.8F_2 + 0.3F_3 + 0.45F_4 = 701$
 $0.08F_1 + 0.05F_2 + 0.45F_3 + 0.3F_4 = 487.3$

Use Gauss - Jorden method to compute the four un-known's in above equations:-

Solution:

Augmented matrix is

\[\]	. 1	1	1	1690	
0.	4 0.1	5 0.25	0.2	412.5	$R_2 = r_2 - (0.4/1)r_1$
0.2	25 0.8	0.3	0.45	701	$R_3=r_3-(0.25/1)r_1$
0.0	0.0	5 0.45	0.3	487.3	$R_4=r_4-(0.08/1)r_1$
$\lceil 1$	1	1	1	1690	
0	-0.25	-0.15	-0.2	- 263.5	
0	0.55	0.05	0.2	278.5	$R_3 = r_3 - (0.55/(-0.25))r_2$
0	-0.03	0.37	0.22	352.1	$R_4=r_4-((-0.03)/(-0.025))r_2$
<u>[1</u>	1	1	1	1690]
0	-0.25	-0.15	-0.2	-263.5	
0	0	-0.28	-0.24	-301.2	
0	0	0.388	0.244	383.72	
$\lceil 1$	1	1	1	1690]
0	-0.25	-0.15	-0.2	-263.5	$R_2 = r_2/(-0.25)$
0	0	-0.28	-0.24	-301.2	$R_3 = r_3/(-0.028)$
$\lfloor 0$	0	0 -	-0.08857	-33.657	$R_4=r_4/(-0.0887)$

$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	1 1 0 0	1 0.6 1 0	1 0.8 0.85714	1690 1054 1075.74 380	$R_1 = r_1 - r_4$ $R_2 = r_2 - (0.8/1)r_4$ $R_3 = r_3 - (0.85714/1)r_4$
$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1 1	1	0 1310 0 750	300]	$R_1 = r_1 - r_3$ $R_2 = r_2 - ((-0.6)/1)r_3$
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0		0 750 1 380		
$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1 1	0 0	İ		$R_1=r_1-r_2$
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	1 0 0 1			
$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0	0 0 0	300		Equivalent system of equations form: $F_1 = 260$, $F_2 = 300$, $F_3 = 750$ and
$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	0	$\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array}$	750 380		$F_4 = 380$ is the solution of the system.

Example 6.6

Balance the following chemical equation:

$$x_1 P_2 I_4 + x_2 P_4 + x_3 H_2 O \rightarrow x_4 PH_4 I + x_5 H_3 PO_4$$

Solution:

P balance: $2x_1 + 4x_2 = x_4 + x_5$

I balance: $4x_1=x_4+x_5$ H balance: $2x_3=4x_4+3x_5$

O balance: $x_3=4x_5$

Re-write these as homogeneous equations, each having zero on its right hand side:

$$2x_1 + 4x_2 - x_4 - x_5 = 0$$

$$4x_1 - x_4 - x = 0$$

$$2x_3$$
 - $4x_4$ - $3x_5$ = 0

$$x_3$$
- $4x_5$ = 0

At this point, there are four equations in five unknowns. To complete the system, we define an auxiliary equation by arbitrarily choosing a value for one of the coefficients:

$$x_1 = 1$$

We can easily solve the above equations to balance this reaction using MATLAB such in table 6.1

Table (6.1) Matlab code and results for solution example (6.6)		
	A = [2 4 0 -1 -1	
	4 0 0 -1 0	
Matlab	0 0 2 -4 -3	
Code	0 0 1 0 -4	
	1 0 0 0 0];	
	B= [0;0;0;0;1];	
	$X = A \setminus B$	
	X =	
	1.0000	
Results	1.3000	
	12.8000	
	4.0000	
	3.2000	

This does not yield integral coefficients, but multiplying by 10 will do the trick: The balanced equation will be:

 $10 \; P_2 I_4 + 13 \; P_4 + 128 \; H_2 O \rightarrow 40 \; PH_4 I + 32 \; H_3 PO_4$