The general procedure for use of Table 11-2 is as follows:

1. Determine the air-flow requirements and the room size.

- 2. Select the number, location, and type of diffuser to be used.
- 3. Determine the room characteristic length.
- 4. Select the recommended throw-to-length ratio from Table 11-2.
- 5. Calculate the throw.
- 6. Select the appropriate diffuser from catalog data such as those in Tables 11-3, 11-4, 11-5, or 11-6.
- 7. Make sure any other specifications are met (noise, total pressure, etc.).

Ex: The room shown in Figure (1) is part of a single-story office building located in the central United States. A perimeter air-distribution system is used. The air quantity required for the room is **250 cfm**. Select diffusers for the room based on cooling.

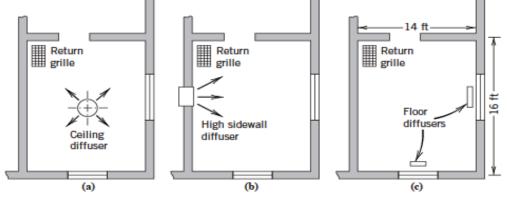


Figure 1 Plan view of a room showing location of different types of outlets.

Solution:.

Diffusers of the type shown in **Table 11-3** should be used for this application.

A diffuser should be placed under each window in the floor near the wall (Figure *c*) because the room has two exposed walls. This will promote mixing with the warm air entering through the window. The total air quantity is **divided equally** between the two diffusers (250/2=125 cfm). If we assume that the room has an 8 ft ceiling and a room cooling load of 40 Btu/(hr-ft2), the room characteristic length is 8 ft (16/2).

Table 11-2 gives a throw-to-length ratio of 1.3 for a straight vane diffuser. Then

$$\frac{x50}{L} = 1.3 \rightarrow \frac{x50}{8} = 1.3 \rightarrow \underline{x50} = 10.4 \text{ ft} \text{ (throw=blow)}$$

From Table 11-3, <u>a 4 × 12 in.</u> diffuser with <u>125 cfm</u> has a throw (blow), corrected for length, between

$$x50 = 13(\frac{3}{4}) = 9.7$$
 ft and $x50 = 17(\frac{3}{4}) = 12.7$ ft

because 125 cfm lies between 111 cfm and 139 cfm.

The NC is quite acceptable and is between $\underline{12 \text{ and } 18}$, uncorrected for length. The total pressure required by the diffuser is between 0.036 and 0.057 in. wg and is about

$$\Delta P = (125/111)^2 \times (0.036) = 0.046$$
 in. wg

An acceptable solution is listed as follows:

Size, in.	Capacity, cfm	Throw, ft	NC	ΔP_0 , in. wg	
4×12	125	10.5	<15	0.046	

The loss in total pressure for the diffuser is an important consideration. The value shown above would be acceptable for a light commercial system.

Diffuser Type	Characteristic Length L
High sidewall grille	Distance to wall perpendicular to jet
Circular ceiling diffuser	Distance to closet wall or intersecting air jet
Sill grille	Length of room in direction of jet flow
Ceiling slot diffuser	Distance to wall or midplane between outlets
Light troffer diffusers	Distance to midplane between outlets plus distance from ceiling to top of occupied zone
Perforated, louvered ceiling diffusers	Distance to wall or midplane between outlets

Table 11-1	Characteristic Room I	Length for	Several Diffusers
------------	-----------------------	------------	-------------------

Source: Reprinted by permission from ASHRAE Handbook, Fundamentals Volume, 1997.

	Room	x_{50}/L^a for		For ADPI	
Terminal	Load,	Maximum	Maximum	Greater	Range of
Device	Btu/hr-ft ²	ADPI	ADPI	Than	x_{50}/L^{a}
High sidewall	80 (252)	1.8	68	_	_
grilles	60 (189)	1.8	72	70	1.5-2.2
	40 (126)	1.6	78	70	1.2-2.3
	20 (63)	1.5	85	80	1.0-1.9
Circular ceiling	80 (252)	0.8	76	70	0.7-1.3
diffusers	60 (189)	0.8	83	80	0.7-1.2
	40 (126)	0.8	88	80	0.5-1.5
	20 (63)	0.8	93	90	0.7-1.3
Sill grille,	80 (252)	1.7	61	60	1.5-1.7
Straight vanes	60 (189)	1.7	72	70	1.4-1.7
_	40 (126)	1.3	86	80	1.2-1.8
	20 (63)	0.9	95	90	0.8-1.3
Sill grille,	80 (252)	0.7	94	90	0.6-1.5
Spread vanes	60 (189)	0.7	94	80	0.6-1.7
-	40 (126)	0.7	94	_	
	20 (63)	0.7	94	_	_
Ceiling slot	80 (252)	0.3	85	80	0.3-0.7
diffusers	60 (189)	0.3	88	80	0.3-0.8
(for T ₁₀₀ /L) ^a	40 (126)	0.3	91	80	0.3-1.1
100	20 (63)	0.3	92	80	0.3-1.5
Light troffer	60 (189)	2.5	86	80	<3.8
diffusers	40 (126)	1.0	92	90	<3.0
	20 (63)	1.0	95	90	<4.5
Perforated and	11-51 (35-160)	2.0	96	90	1.4-2.7
louvered ceiling diffusers				80	1.0-3.4

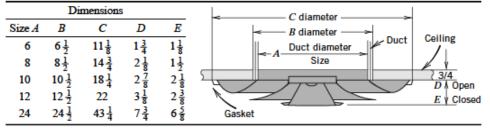
Table 11-2 Air Diffusion Performance Index (ADPI) Selection Guide

^{*a*}For SI units, $x_{0.25}/L$ and $T_{0.5}/L$

Source: Reprinted by permission from ASHRAE Handbook, Fundamentals Volume, 1997.

Cine	A	Total Broomer	Elem			Throw, ^a ft	:
Size, in.	Area, ft ² /ft	Pressure, in. wg	Flow, cfm/ft	NC ^b	Min.	Mid.	Max.
2	0.055	0.009	22	_	1	1	1
		0.020	33	_	4	4	4
		0.036	44	12	7	7	7
		0.057	55	18	9	9	10
		0.080	66	23	11	11	12
		0.109	77	27	13	14	16
		0.143	88	31	14	16	18
		0.182	99	34	15	17	20
		0.225	110	37	17	19	21
4	0.139	0.009	56	_	3	3	3
		0.020	83	_	9	9	9
		0.036	111	12	13	13	13
		0.057	139	18	16	16	17
		0.080	167	23	20	20	21
		0.109	195	27	22	23	24
		0.143	222	31	24	25	26
		0.182	250	34	27	27	27
		0.225	278	37	30	30	30
6	0.221	0.009	88	_	5	5	5
		0.020	133	_	10	10	10
		0.036	177	13	15	15	15
		0.057	221	19	18	18	18
		0.080	265	24	23	23	23
		0.109	310	28	25	25	25
		0.143	354	32	28	28	28
		0.182	398	35	31	31	31
		0.225	442	38	32	32	32

Table 11-3 Performance Data for a Typical Linear Diffuser


Active Length,	at	lier Factor for Th Ferminal Velocity,		
ft	150	100	50	مصبابات المابسي
1 10 or continuou	0.5 s 1.6	0.6 1.4	0.7 1.2	
Active Length, ft	NC Correction	Active Length, ft	NC Correction	< Size>
1	-10	10	0	
2	-7	15	+2	
4	-4	20	+3	
6	-2	25	+4	
8	-1	30	+5	

^aMinimum throw values refer to a terminal velocity of 150 ft/min, middle to 100 ft/min, and maximum to 50 ft/min, for a 4 ft active section with a cooling temperature differential of 20 F. The multiplier factors listed at the bottom are applicable for other lengths. ^bBased on a room absorption of 80 dB referred to 10⁻¹² W, and a 10 ft active section. *Source*: Reprinted by permission of Environmental Elements Corporation, Dallas, TX.

Size.	Neck Velocity,	Velocity Pressure,	Total Pressure,	Flow Rate,	Radiu	s of Diffus	ion,ª ft	
in.	ft/min			cfm	Min.	Mid.	Max	NC
		in.wg	in.wg					NC
6	400	0.010	0.026	80	2	2	4	_
	500	0.016	0.041	100	2	3	5	_
	600	0.023	0.059	120	2	4	6	14
	700	0.031	0.079	140	3	4	7	19
	800	0.040	0.102	160	3	5	8	23
	900	0.051	0.130	180	4	5	9	26
	1000	0.063	0.161	200	4	6	10	30
	1200	0.090	0.230	235	5	7	11	35
8	400	0.010	0.033	140	2	4	6	_
	500	0.016	0.052	175	3	4	7	15
	600	0.023	0.075	210	4	5	9	21
	700	0.031	0.101	245	4	6	10	26
	800	0.040	0.130	280	5	7	11	31
	900	0.051	0.166	315	5	8	13	34
	1000	0.063	0.205	350	6	9	14	37
	1200	0.090	0.292	420	7	11	17	44
10	400	0.010	0.027	220	3	4	7	_
	500	0.016	0.043	270	3	5	8	11
	600	0.023	0.062	330	4	6	10	17
	700	0.031	0.084	380	5	7	11	21
	800	0.040	0.108	435	5	8	13	26
	900	0.051	0.138	490	6	9	15	30
	1000	0.063	0.170	545	7	10	16	33
	1200	0.090	0.243	655	8	12	20	39
12	400	0.010	0.026	315	3	5	8	_
	500	0.016	0.042	390	4	6	10	11
	600	0.023	0.060	470	5	7	12	17
	700	0.031	0.081	550	6	8	13	22
	800	0.040	0.105	630	6	10	15	26
	900	0.051	0.134	705	7	11	17	30
	1000	0.063	0.166	785	8	12	19	33
	1200	0.090	0.236	940	10	14	23	39
18	400	0.010	0.030	710	5	7	12	_
	500	0.016	0.048	885	6	9	15	15
	600	0.023	0.069	1060	7	11	18	21
	700	0.031	0.093	1240	9	13	21	26
	800	0.040	0.120	1420	10	15	24	30
	900	0.051	0.153	1590	11	17	27	34
	1000	0.063	0.189	1770	12	19	30	37
	1200	0.090	0.270	2120	15	22	36	43

Table 11-4 Performance Data for a Typical Round Ceiling Diffuser

Table 11-4 Performance Data for a Typical Round Ceiling Diffuser (continued)

"Minimum radii of diffusion are to a terminal velocity of 150 ft/min, middle to 100 ft/min, and maximum to 50 ft/min. ^bThe NC values are based on a room absorption of 18 dB referred to 10^{-13} W (8 dB referred to

10-12 W).

Source: Reprinted by permission of Environmental Elements Corporation, Dallas, TX.

		Flow,		Veloc.	To	tal Press	ure,					
Sizes.	A _c ,	Rate.	Veloc.,	Press.		in.wg			Defl.,		Throw, :	ft
in.	ft ²	cfm	ft/min	in. wg	0°	$22\frac{1}{2}^{\circ}$	45°	NC	deg	Min.	Mid.	Max.
8×4	0.18	70	400	0.010	0.017	0.019	0.029		0	6	8	15
7×5,									22]	5	6	12
6×6									45	3	4	8
10×4,	0.22	90							0	7	10	17
8×5,									22]	6	8	14
7×6									45	3	- 5	9
12×4 ,	0.26	105							0	7	11	19
10 × 5,									22]	6	9	15
8×6									45	4	- 5	9
16×4,	0.34	135							0	8	12	21
12×5 ,									22]	6	10	17
10×6									45	4	6	11
18×4,	0.39	155							0	9	13	23
14 × 5,									22]	7	10	18
12×6 ,									45	4	6	11
8×4,	0.18	90	500	0.016	0.028	0.031	0.047		0	7	11	17
7×5,									22]	6	9	14
6 × 6									45	4	- 5	9
10×4,	0.22	110							0	8	12	19
8×5,									22]	6	10	15
7×6									45	4	6	10
12×4 ,	0.26	130							0	9	13	21
10 × 5,									22]	7	10	17
8×6									45	4	7	10
16 × 4,	0.34	170							0_	10	15	24
12 × 5,									22]	8	12	19
10×6									45	5	8	11
18×4 ,	0.39	195							0	11	16	25
14 × 5,									22]	9	13	20
12×6 ,									45	5	8	13

Table 11-5 Performance Data for an Adjustable-Type, High Sidewall Diffuser

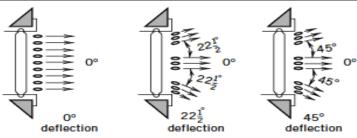

continues

Table 11-5	Performance Data	for an Adjustab	le-Type, High	Sidewall Diffuser	(continued)

		Flow.		Veloc.	To	tal Press	ure,					
Sizes,	A _c ,	Rate,	Veloc.,	Press.,		in.wg			Defl.,		Throw,	ft
in.	ft ²	cfm	ft/min	in. wg	0°	$22\frac{1}{2}^{\circ}$	45°	NC	deg	Min	Mid	Max.
8×4,	0.18	110	600	0.022	0.038	0.043	0.064	10	0	9	13	19
7×5,									$22\frac{1}{2}$	7	10	15
6×6									45	4	7	10
10×4,	0.22	130						10	0	9	15	21
8×5,									$22\frac{1}{2}$	7	12	17
7×6									45	5	7	10
12×4,	0.26	155						11	0	10	16	23
10×5,									$22\frac{1}{2}$	8	13	18
8×6									45	5	8	11
16×4,	0.34	205						12	0	12	19	26
12×5,									$22\frac{1}{2}$	10	15	21
10×6									45	6	9	13
18×4,	0.39	235						13	0	13	19	28
14×5,									$22\frac{1}{2}$	10	15	22
12×6,									45	7	10	14
8×4,	0.18	125	700	0.030	0.052	0.058	0.088	15	0	10	15	20
7×5,									$22\frac{1}{2}$	8	12	16
6×6									45	5	7	10
10×4,	0.22	155						15	0	11	16	23
8×5,									$22\frac{1}{2}$	9	13	18
7×6									45	6	8	11
12×4,	0.26	180						16	0	12	17	24
10×5,									$22\frac{1}{2}$	10	14	19
8×6									45	6	9	12
16×4,	0.34	240						17	0	14	20	28
12×5,									$22\frac{1}{2}$	11	16	22
10×6									45	7	10	14
18×4,	0.39	275						18	0	15	22	30
14×5,									$22\frac{1}{2}$	12	18	24
12×6,									45	8	11	15
8×4,	0.18	145	800	0.040	0.069	0.078	0.117	19	0	11	16	22
7×5,									$22\frac{1}{2}$	9	13	18
6×6									45	6	8	11
10×4 ,	0.22	175						19	0	13	17	24
8×5,									$22\frac{1}{2}$	10	14	19
7×6									45	6	9	12
12×4 ,	0.26	210						20	0	14	19	26
10×5 ,									$22\frac{1}{2}$	11	15	21
8×6								_	45	7	9	13
16×4	034	270						21	0	16	22	30

Table 11-5 Performance Data for an Adjustable-Type, High Sidewall Diffuser (continued)

		Flow.		Veloc.	To	otal Pressu	re,					
Sizes,	A _c ,	Rate,	Veloc.,	Press.		in. wg			Defl.,		Throw,	ft
in.	ft2	cfm	ft/min	in. wg	0°	$22\frac{1}{2}^{\circ}$	45°	NC	deg	Min.	Mid.	Max.
10×4	0.22	220						25	0	16	19	27
8×5,									22 불	13	15	22
7×6									45	8	10	13
12×4 ,	0.26	260						26	0	17	21	19
10×5,									22 1	14	17	23
8×6									45	8	11	15
16×4,	0.34	340						27	0	20	24	33
12 × 5,									22 1	16	19	26
10×6									45	10	12	17
18×4 ,	0.39	390						28	0	21	26	36
14×5,									22 1/2	17	21	29
12×6 ,									45	11	13	18

Source: Reprinted by permission of Environmental Elements Corporation, Dallas, TX.

<u>Example 2</u>: Suppose the room of Figure 1 is located in the southern latitudes where overhead systems are recommended. Select a round ceiling diffuser system and a high sidewall system. Also select a return grille.

Given: 250 cfm air quantity Required:

Select a round ceiling diffuser, select high sidewall grille, and select a return grille.

Figure 1

Solution: The data of Table 11.1 with information from Table 11.2 and 11.4 will be used to select a **ceiling diffuser**. The characteristic length is 7 or 8 ft and the throw-to-length ratio is 0.8; then

 $x_{50} / L = 0.8 \rightarrow x_{50} = 0.8 \times (7) = 5.6 \text{ ft}$

Using correction factor: $x_{50}=5.6/0.75=7.5$

The best choice would be

Size, in	Throw, ft	NC	⊿P₀, in. wg		
10	7 ½	10	0.035		

The throw is larger than desired, but the throw-to-length ratio is within the range to give a minimum *ADPI* of 76 percent. **Figure 1a** shows this application.

A high sidewall diffuser may be selected from Table 11.2. In this case the throw-to-length ratio should be about 1.8 and the characteristic length is 14 ft; then

 $x_{50} / L = 1.8 \rightarrow x_{50} = 1.8 \times (14) = 25.2 \text{ ft}$

At 240 cfm, pressure drop at 22 ½ degree spread would be 0.058: At 250 cfm, pressure drop at 22 ½ degree spread would be acceptable

$$\Delta P = (\frac{250}{240})^2 \times 0.058 = 0.063 \text{ in. wg}$$

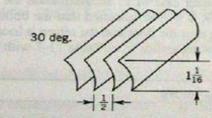
The best choice would be

 <u> </u>	v ,		
Size, in	Throw, ft	NC	⊿P₀, in. wg
16 x4			
12 x 5	25	18	0.063
10 x 6			

RETURN GRILLES

Velocities thru return grilles depend on (1) the static pressure loss allowed and (2) the effect on occupants or materials in the room. In determining the pressure loss, computations should be based on the free velocity thru the grille, not on the face velocity, since the orifice coefficient may approach 0.7. In general the following velocities may be used (see table 1-7):

GRILLE LOCATION	FPM OVER GROSS AREA					
Commercial						
Above occupied zone	800 and above					
Within occupied zone not near seats	600-800					
Within occupied zone near scats	400-600					
Door or wall louvers	500-1000					
Undercutting of doors	600*					
Industrial	800 and above					
Residential	400					


Table 1-7 Recommended return velocities for	or different applications.
---	----------------------------

*Thru undercut area

:		Core Velocity, fpm	200	300	400	500	600	700	800
		Velocity Pressure, in. wg		0.006	0.010	0.016	0.023	0.031	0.04
4.		Static Pressure,		1			9.7	6.10	0.04
A n2	Sizes, in.	in. wg	-0.011	-0.033	-0.055	-0.088	-0.126	-0.170	
0.34		cfm	70	100	135	170	205	240	-0.2
-	10×6	NCa			13	20	25	30	270 33
0.39	18×4	cfm	80	115	155	195	235	275	
	12×6	NC			14	21	26	31	310
0.46	20×4	cfm	90	140	185	230	275	320	34 370
	14×6	NC			15	22	27	32	35
	10×8								33
0.52	24×4	cfm	105	155	210	260	310	365	410
	16×6	NC			16	23	28	33	415
0.60	28×4	cfm	120	180	240	300	360	420	36 480
	18×6	NC			17	24	29	34	
0.00	12×8							Gran (37
0.69	30 × 4	cfm	140	205	275	345	415	485	550
	20×6	NC			17	24	29	34	
	14×8								37
0.01	12×10								
0.81	36×4	cfm	160	245	325	405	485	565	
	22×6	NC		10	18	25	30	35	650
	16×8						50	33	38
0.00	14×10								
0.90	40×4	cfm	180	270	360	450	540	620	
	26×6	NC		11	19	26	31	630	720
	18×8						51	36	39
	16×10								
	12×12								
1.07	48×4	cfm	215	320	430	535			-
	30×6	NC		12	20	27	640	750	855
	18×10				20	21	32	37	40
100	14×12								
1.18	34×6	cfm	235	355	470		100		
	24×8	NC	- Ales	13		590	710	825	945
	20×10			15	21	28	33	38	41
	16×12								
1.34	60×4	cfm	270	400	F26	ALL DE DE LE			
	36×6	NC		400	535	670	805	940	1070
	18×12			13	21	28	33	38	41
	16×14								
.60	30×8	cfm	320	100	-				
	24×10	NC	520	480	640	800	960	1120	1280
	22×12	ne		14	22	29	34	39	42
	18×14						(A)	10.30%	
		a second second second							

	Velocity, fpm	200	300	400	500	600		in R
	Velocity Pressure, in. wg	0.002	0.006		-	600	700	800
Sizes, in.	Static Pressure, in. wg	-0.011		201		PAL.		0.040
36×12	cfm NC	360	540 15	720	900	1080	1260	-0.220
				-	30	35	40	43
60×6 cfm 40×8 NC		415	625 16	830 24	1040 31	1250 36	1460 41	1660 44
30×12 24×14								
48×8 26×14	cfm NC	490	735	980	1220	1470	1720	1960
24×16			11	25	32	37	42	45
		555	835	1110	1390	1670	1950	2220
26×16	NC		18	26	33	38	43	46
40 × 12 36 × 14	cfm NC	620	935	1240	1560	1870	2180	2490
30 × 16 24 × 20	a server a		13	21	34	39	44	47
48 × 12 36 × 16	cfm NC	720	1080 20	1440 28	1800 35	2170	2530	2890 48
	$\begin{array}{c} 48 \times 6\\ 36 \times 12\\ 30 \times 10\\ 24 \times 12\\ 60 \times 6\\ 40 \times 8\\ 36 \times 10\\ 30 \times 12\\ 24 \times 14\\ 20 \times 16\\ 48 \times 8\\ 26 \times 14\\ 24 \times 16\\ 36 \times 12\\ 30 \times 14\\ 26 \times 16\\ 24 \times 18\\ 40 \times 12\\ 36 \times 14\\ 30 \times 16\\ 24 \times 20\\ 48 \times 12\\ \end{array}$	$\begin{array}{c c} & Pressure, \\ in. wg \\ \hline Static \\ Pressure, \\ \hline Sizes, in. & in. wg \\ \hline \\ 48 \times 6 & cfm \\ 36 \times 12 & NC \\ 30 \times 10 \\ 24 \times 12 & \\ 60 \times 6 & cfm \\ 30 \times 10 \\ 24 \times 12 & \\ 60 \times 6 & cfm \\ 40 \times 8 & NC \\ \hline \\ 36 \times 10 & \\ 30 \times 12 & \\ 24 \times 14 & \\ 20 \times 16 & \\ \hline \\ 48 \times 8 & cfm \\ 26 \times 14 & NC \\ 24 \times 16 & \\ \hline \\ 36 \times 12 & cfm \\ \hline \\ 30 \times 14 & NC \\ \hline \\ 26 \times 16 & \\ \hline \\ 24 \times 18 & \\ 40 \times 12 & cfm \\ \hline \\ 30 \times 14 & NC \\ \hline \\ 26 \times 16 & \\ \hline \\ 48 \times 20 & \\ \hline \\ 48 \times 12 & cfm \\ \hline \\ 36 \times 12 & cfm \\ \hline \\ 36 \times 14 & NC \\ \hline \\ 30 \times 16 & \\ \hline \\ 24 \times 20 & \\ \hline \\ 48 \times 12 & cfm \\ \hline \\ 36 \times 16 & NC \\ \hline \end{array}$	$\begin{array}{c c c c c c c } & Pressure, \\ in. wg & 0.002 \\ \hline Static \\ Pressure, \\ \hline Sizes, in. & in. wg & -0.011 \\ \hline 48 \times 6 & cfm & 360 \\ \hline 36 \times 12 & NC \\ \hline 30 \times 10 & & & \\ 24 \times 12 & & & \\ 60 \times 6 & cfm & 415 \\ \hline 40 \times 8 & NC \\ \hline 36 \times 10 & & & \\ 30 \times 12 & & & \\ 24 \times 14 & & & \\ 20 \times 16 & & & \\ 48 \times 8 & cfm & 490 \\ \hline 26 \times 14 & NC \\ \hline 24 \times 16 & & & \\ 36 \times 12 & cfm & 555 \\ \hline 30 \times 14 & NC \\ \hline 26 \times 16 & & & \\ 40 \times 12 & cfm & 555 \\ \hline 30 \times 14 & NC \\ \hline 26 \times 16 & & & \\ 40 \times 12 & cfm & 620 \\ \hline 24 \times 18 & & & \\ 40 \times 12 & cfm & 620 \\ \hline 36 \times 14 & NC \\ \hline 30 \times 16 & & & \\ 24 \times 20 & & \\ 48 \times 12 & cfm & 720 \\ \hline 36 \times 16 & NC \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Velocity Pressure, in. wg 0.002 0.006 0.010 0.016 Static Pressure, Sizes, in. in. wg -0.011 -0.033 -0.055 -0.088 48 × 6 cfm 360 540 720 900 36×12 NC 360 540 720 900 30 24×12 00×6 cfm 415 625 830 1040 40×8 NC 16 24 31 30 31 36×10 36 × 10 1040 16 24 31 30×12 24 1 725 32 24×14 26 33 30 32 26×16 18 26 33 26×16 19 27 34 40×12 cfm 620 935 1240 1560 $36 \times$	Velocity Pressure, in. wg 0.002 0.010 0.016 0.023 Sizes, in. in. wg 0.011 -0.033 -0.055 -0.088 -0.126 Sizes, in. in. wg -0.011 -0.033 -0.055 -0.088 -0.126 48 × 6 cfm 360 540 720 900 1080 36 × 12 NC 15 625 830 1040 1250 36 × 10 36 120 1470 26 × 14 NC 17 25 32 36 × 12 cfm 490 735 980 1220 1470 36 × 12 cfm 555 835 1110 <td>Velocity Pressure, in. wg 0.002 0.006 0.010 0.016 0.023 0.031 Static Pressure, Pressure, in. wg -0.011 -0.033 -0.055 -0.088 -0.126 -0.170 48 × 6 cfm 360 540 720 900 1080 -0.170 36× 12 NC 15 23 30 35 40 36× 12 NC 15 23 30 1250 1460 36× 10 36 cfm 415 625 830 1040 1250 1460 36× 12 cfm 415 625 830 1220 1470 1720 26× 14 NC</td>	Velocity Pressure, in. wg 0.002 0.006 0.010 0.016 0.023 0.031 Static Pressure, Pressure, in. wg -0.011 -0.033 -0.055 -0.088 -0.126 -0.170 48 × 6 cfm 360 540 720 900 1080 -0.170 36× 12 NC 15 23 30 35 40 36× 12 NC 15 23 30 1250 1460 36× 10 36 cfm 415 625 830 1040 1250 1460 36× 12 cfm 415 625 830 1220 1470 1720 26× 14 NC

based on a room absorption of 8 dB, with respect to 10⁻¹² watts, and one return.

Source: Reprinted by permission of Environmental Elements Corporation, Dallas, TX.

Example: Small store dimensions: $32 \times 23 \times 16$ ft Ceiling – flat Load – equally distributed Air quantity – 2000 cfm Temp difference – 25 F **Find:** Number of outlets, Size of outlets,

Solution:

-The minimum blow is 75% of the room width for the given condition of equally distributed heat load. Therefore, the minimum blow necessary is: $23 \times 0.75 = 17.3$ ft

- The maximum blow is the width of the room =32 ft

- The blow of 17.5 to 34 ft. - No. of outlets= $\frac{2000}{500} = 4$ - nominal size 24 in. x 6 in $k = \frac{2000}{32 \times 16} = 3.9$

TABLE 1-8 - WALL OUTLET RATINGS, FOR COOLING ONLY

For Flat Ceilings

OUTLET V	LOCITY		250	FPM			375 FPM					SOO FPM				750 FPM								
STATIC P		Str 8 = .01, 22 $\frac{1}{2}$ = .01 45^{+} = .01 Str 8 = .01, 22 $\frac{1}{2}$ = .015 45^{+} = .028				See 8 = .013, 2235 ⁺ = .015 45^{+} = .019 See 8 = .024, 2235 ⁺ = .043 45^{+} = .065				$5tr 8 = .024, 2235^{\circ} = .028$ $45^{\circ} = .035$ $5tr 8 = .061, 2235^{\circ} = .082$ $45^{\circ} = .118$				Ser 8 = .051, 2215" = .061 45" = .08										
TATIC PRES	SURE WITH D PLATE													Str B = .175, 22% * = .19 45* = .27										
dom, Size of Outlot and Free	Vene Setting	Air Quan- Iity	61ew (91)	Tem; 15	20	(P) 25	Alr Quen- Iily	Blow (N)	15	20	35	Air Quan- Iity	Mow (N)	15	p Dilf 20	25	Alr Qeen-	Blow (ft)	15	p Dié 20	25			
Area)	Straight	(cim)	3.5	6.5	7.0	HI 7.9	(cim)	7.0	7.5	Clg 7.5	HI 8.0	(cfm)	10.0	Mi 7.5	n Cig A O	н: 8,5	(clm)	17.0	8.5	n Cig 9.0	HI 9.0			
(16.9)	22%* 45*	30	2.5 1.8	6.5 6.0	6.5 6.0	6.5 6.5	44	5.1 3.5	6.5 6.5	7.0 6.5	7,0 7,0	59	7.5 5.0	7.0 6.5	7.5	7.5 7.0	69	13.0 9.0	7.5 6.5	7.5 7.0	8.0 7.0			
10 x 4 (21.7)	Straight 22 1/5* 45*	37	3.5 2.5 1.8	6.5 6.5 6.0	7.0 6.5 6.0	7.5 7.0 6.5	57	7.4 5.5 3.7	7.5 6.5 6.5	7.5 7.0 6.3	8.0 7.0 7.0	75	10.5 8.0 5.4	7.5 7.0 6.5	8.0 7.5 6.5	8.5 7.5 7.0	112	18.0 13.0 9.0	8.5 7.5 6.5	9,0 8,0 7,0	9.0 8.0 7.0			
12 x 4 (24.6)	Straight 2214* 45*	44	3.5 2.5 1.4	65 65 60	7.0 6.5 6.5	7.5 7.0 6.5	"	7.5 5.5 3.9	7.5 7.0 6.3	7.5 7.0 6.5	8,0 7,5 7,0	91	11.0 8.1 5.5	8.0 7.0 6.5	8.0 7.5 7.0	8.5 7.5 7.0	136	18.0 13.0 9.0	8.5 7.5 6.5	9,0 8,0 7,0	9.5 8.5 7.0			
16 x 4 (35.9)	Streight 221/5* 45*	61	37 27 20	7.0 6.5 6.0	7.0	7.5	92	7.9	7.5	7.5 7.0 4.5	8.0 7.5 7.0	122	11.0 8.1 5.5	8.0 7.0 6.5	8.0 7.5 7.0	8.5 7.5 7.0	183	19,0 14,0 19,0	8.5 7.5 6.5	9.0 8.0 7.0	9.5 8.5 7.5			
20 x 4 (45.5)	Streight 22%* 45*	77	4.0 3.0 2.0	7.0 6.5 6.0	7.0 6.5 6.5	7.5 7.0 6.5	115	8.0 6.0 4.0	7.5 7.0 6.5	8.0 7.0 6.5	8.0 7.5 7.0	154	11.5 8.5 6.0	8.0 7.5 6.5	8.0 7.5 7.0	8.5 8.0 7.0	231	20.0 15.0 10.0	8.5 7.5 6.5	9.0 8.0 7.0	9.9 8.9 7.9			
24 x 4 (55.0)	Straight 221/5* 45*	93	4.1 3.1 2.0	7.0 6.5 6.0	7.0 7.0 6.5	7.5 7.0 6.5	129	8.0 6.0 4.0	7.5 7.0 6.5	8.0 7.0 6.5	8.0 7.5 7.0	185	11.5 8.5 6.0	8.0 7.5 6.5	8.0 7.5 7.0	8.5 8.0 7.0	278	20.0 15.0 10.6	8.5 7.5 4.5	9.0 8.0 7.0	10.0 8.3 7.3			
30 x 4 (68.3)	Straight 221/5° 45°	116	4.2 3.1 2.1	7.0 4.5 4.0	7.0 7.0 6.5	7.5 7.0 4.5	175	8.0 6.0 4.0	7.5 7.0 6.5	8.0 7.5 6.5	8.0 7.5 7.0	233	12.0 9.0 6.0	8.0 7.5 6.5	8.0 7.5 7.0	8.5 8.0 7.0	349	21.0 16.0 11.0	8.5 7.5 7.0	9.5 8.0 7.0	10.0 8.2 7.2			
36 x 4 (83.5)	Strolght 22.56* 45*	140	4.4 3.3 2.2	7.0 6.5 6.0	7.5 7.0 6.5	7.5 7.0 6.5	210	8.0 4.0 4.0	7.5 7.0 6.5	8.0 7.5 6.5	8.0 7.5 7.0	279	12.0 9.0 6.0	8.0 7.5 6.5	8.5 7.5 7.0	9.0 8.0 7.0	420	21.0 16.0 11.0	9.0 7.5 7.0	9.5 8.5 7.0	10.0 8.5 7.5			
8 x 6 (26.5)	Straight 221/5* 45*	52	5.0 3.8 2.5	7.5 7.0 6.0	7.5 7.0 6.5	8.0 7.5 6.5	π	9.5 7.0 4.8	8.0 7.0 6.5	8.0 7.5 7.0	8.5 8.0 7.0	103	13.0 10.0 6.0	8.5 7.5 7.0	9.0 8.0 7.0	9.0 8.5 7.5	133	24.0 18.0 12.0	8.5 8.0 7.0	10.0 8.5 7.5	10.5 9.5 8.0			
10 x 6 (34.0)	Straight 221/5° 45°	66	5.5 4.1 2.8	7.5 7.0 6.5	8.0 7.5 7.0	8.0 7.5 7.0	98	10.0 7.5 5.0	8.0 7.5 7.0	8.5 8.0 7.0	9.0 8.5 7.5	131	15.0 11.0 7.0	9.0 8.0 7.0	9.5 8.5 7.5	10.0 9.0 7.5	196	27.0 20.0 14.0	10.0 8.5 7.5	10.5 9.0 7.5	11.3 10.0 0.0			
12 x 6 (41.6)	Strolight 2216* 45*	80	4.0 4.5 3.0	7.5 7.0 4.5	8.0 7.5 7.0	8.5 7.5 7.0	119	11.0 8.1 5.5	8.0 7.5 7.0	9.0 8.0 7.0	9.5 8.5 7.5	159	15.0 11.0 7.0	9.0 8.0 7.0	9.5 8.5 7.5	10.0 9.0 7.5	234	28.0 21.0 14.0	10.0 9.0 7.5	11.0 9.5 8.0	11.5 10.0 8.0			
16 x 6 (56.6)	Stroight 221/5* 45*	107	6.2 4.7 3.2	8.0 7.0 6.5	8.0 7.5 7.0	8.5 7.5 7.0	161	12.0 9.0 6.0	8.5 8.0 7.0	9.0 8.0 7.0	9,5 8,5 7,5	214	14.0 12.0 8.0	9.5 8.5 7.5	10.0 9.0 7.5	9.5	321	30,0 22,0 15,0	11.0 9.5 7.5	11.5 10.0 8.0				
20 x 6 (71.5)	Strolght 22 %* 43*	135	6.6 5.0 3.2	8.0 7.5 7.0	8.5 7.5 7.0	9.0 8.0 7.5	202	12.0 9.0 6.6	9.0 8.0 7.0	9.5 8.5 7.5	10.0 9.0 7.5	249	17.0 13.0 9.0	9.5 8.5 7.5	10.0 9.0 8.0	11,0 9,5 8,0	403	32.0 24.0 16.0	11.5 9.5 8.0	12.0 10.0 8.5	13.0 11.0 9.0			
24 x 6 (86.5)	Strolght 2215° 45°	162	7.0 5.1 3.5	8.0 7.5 7.0	8.5 8.0 7.0	9.0 8.0 7.5	243	13,0 10,0 4,5	9.0 8.0 7.0	9.5 8.5 7.5	10.0 9.0 8.0	324	18.0 13.0 9.0	10.0 8.5 7.5	10.5 9.0 8.0	11.0 10.0 8.5	485	33.0 25.0 17.0	12.0 10.0 8.0					
30 x 6 (109.0)	Straight 22 %* 45*	293	7.0 5.4 3.5	8.5 7.5 7.9	8.5 8.0 7.0	9.5 8.0 7.5		13.0 10.0 4.5	9.0 8.0 7.5	10.0 9.0 7.5	10.5 9.0 8.0	406	19.0 14.0 10.0	10.0 9.0 7.3	11.0 9.5 8.0	11.5 10.0 8.5	609	34.0 25.0 17.0	12.0 10.0 8.0	12.5 10.5 9.0	13.3 11.3 9,6			
36 x 6 (131.3)	Stroight 22%* 45*	245	7.1 5.5 3.5	8.5 7.5 7.0	9.0 8.0 7.5	9.5 8.5 7.5	368	13.0 10.0 6.5	9.5 8.5 7.5	10.0 9.0 8.0	10.5 9.5 8.0	490	19.0 14.0 10.0	10,0 9,0 8,0	11.0 9.5 8.0	12.0 10.0 8.5		35.0 24.0 18.0	12.0 10.0 8.5	13.0 10.5 9.0				
								K	PACI	OR														
Max Cle Outlet W	ell Area		:	19.0				1	9.0				1	4.0				-	9.6					
Min Che, Outlet W	Sq Ft Sall Area			6.7					97 1					4.2				1	2.9		2.9			