
One Way Ribbed Slab (joist construction):-

Total depth h

to be calculated from table 9.5.a (ACI code) based on deflection consideration:-

$$h \ge \frac{L}{16}$$
 simpLy suported

$$h \ge \frac{L}{18.5}$$
 one end contious

$$h \ge \frac{L}{21}$$
 two end contious

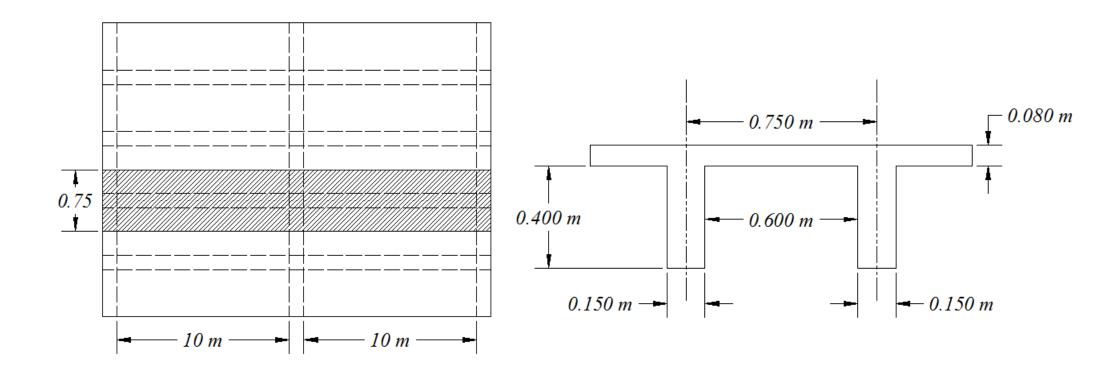
$$h \ge \frac{L}{8}$$
 cantilever

ACI code limitation (ACI code 8.11)

$$\begin{aligned} b_w &\geq 100 mm \\ h &\leq 3.5 b_w \\ L_c &\leq 750 \ mm \quad 8.11.3 \\ hf &\geq max. \left(\frac{L_c}{12}, 50 mm\right) \end{aligned}$$

Note:-Section dimension may be obtained from manufactures catalogues

ACI 8.11.4:-joist construction not meeting these limitation shall be designed as slabs and beams


Stiffeners(bridging ribs) shall be used as follow:

- $L_n \le 7.3$ m one stiffeners at $\frac{L_n}{2}$
- $L_n > 7.3$ m two stiffeners at $\frac{\bar{L_n}}{3}$, $\frac{2L_n}{3}$

Example

Design the two panel slab system as one way ribbed (joist) slab.

$$W_{L,L} = 3 \frac{kN}{m^2}$$
, $\frac{S}{c} = \frac{350}{30}$ MPa, $L_c = 600$ mm, $b_w = 150$ mm, $hf = 80$ mm

Solution:

both end continous
$$h_{min} = \frac{L_n}{21} = \frac{10 * 1000}{21} = 476 mm$$

= 480mm

 $b_w = 150 \text{mm} > 100 \text{ mm o. k}$

$$h = 480 \text{ mm} \le 3.5 \text{ b}_w = 3.5 * 150 = 525 \text{mm o. k}$$

$$L_c = 600 < 750 \text{ mm o. k}$$

hf = 80 > max.
$$\left(\frac{L_c}{12} = \frac{600}{12} = 50 \text{ mm, } 50 \text{mm}\right)$$
 o. k

Section dimensions are satisfied the ACI code limitation

Dead load calculations

Slab weight =
$$[(Lr * hf) + bw(h - hf)] * \gamma_c * \frac{1}{Lr}$$

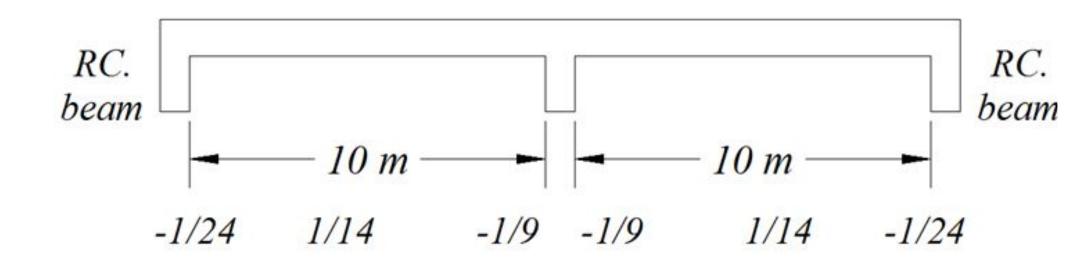
Slab weight = $((0.75 * 0.08) + (0.15 * 0.4)) * 24.5 * \frac{1}{0.75}$
= $3.92 \frac{kN}{m^2}$

Plastering =
$$0.48 \frac{\text{kN}}{\text{m}^2}$$

Tiling with mortar=
$$0.04*24.5=0.98\frac{kN}{m^2}$$

Minor partitions =
$$0.7 \frac{kN}{m^2}$$

$$\sum W_{D.L} = 6.08 \frac{kN}{m^2}$$


$$W_u = 1.6 W_L + 1.2 W_d = 1.6 * 3 + 1.2 * 6.08 = 12.096 \frac{kN}{m^2}$$

W_u uniformly distributed load per m²

 $\overline{W_u}$ = uniformly distributed load per rib = $W_u * L_r$

$$= 12.096 * 0.75 = 9.07 \frac{kN}{m}$$

Moment and shear coefficient are used in analysis:

$$M_u = \overline{W_u} * L_n^2 * coff = 9.07 * (10)^2 * coff = 907 * coff$$

 $d = t - 25mm = 480 - 25 = 455 mm$

B.M coff.	$M= \overline{W_u} * L_n^2 * coff.$	$R = \frac{Mu}{\emptyset fc'bd^2}$	ω from table	$\rho = \omega * \frac{fc'}{fy}$	$As = \rho bd$ mm^2
-1/9	100.8	0.1202	0.130	0.0111	ρ^{-} bwd = 758
-1/24	37.8	0.0451	0.046	$0.0039 \rightarrow 0.004$	ρ^{-} bwd =273
+1/14	64.8	0.0154	0.0155	0.00133	ρ^+ Lrd =453
			All ω		
			$<\omega_{\rm max}$		

assume $\emptyset = 0.9$ to be checked later

for M^- (rec. sec bw * h)

$$R^{-} = \frac{M_{u}^{-}}{\emptyset fc'b_{w}d^{2}} = \frac{M_{u}^{-}}{0.9*30*10^{3}*0.15*(0.455)^{2}} = \frac{M_{u}^{-}}{838}$$

for M^+ (rec. or T - sec)

$$M_u f = \emptyset 0.85 \text{ fc'} L_r h f \left(d - \frac{hf}{2} \right) = 0.9 * 0.85 * 30 * 10^3 * 0.75 *$$

$$0.08 * \left(0.455 - \frac{0.08}{2}\right) = 571$$
kN. m > $M_u^+ = 64.8$ kN. m

 \therefore a < hf (Rectangular section with L_r width) \rightarrow useR = $\frac{Mu}{\emptyset fc'bd^2}$

$$R^{+} = \frac{M_{u}^{+}}{\emptyset fc'L_{r}d^{2}} = \frac{64.8}{0.9 * 30 * 10^{3} * 0.75 * (0.455)^{2}} = 0.0154$$

$$\omega_{\text{max}} = 0.364 * \beta_1 = 0.364 * 0.85 = 0.309$$

$$\rho_{\text{min}}$$
 = max. $\left(\frac{1.4}{\text{fy}} = \frac{1.4}{350} = 0.004, \frac{\sqrt{\text{fc}'}}{4\text{fy}} = \frac{\sqrt{30}}{4*350} = 0.0039\right) =$

0.004 for negative moment

$$\rho_{\text{min.}}^{+} = \max_{b} \left(\frac{1.4}{\text{fy}}, \frac{\sqrt{\text{fc'}}}{4\text{fy}}\right) * \frac{b_{\text{w}}}{b} = 0.004 * \frac{150}{750} = 0.0008 \text{ for}$$

positive moment

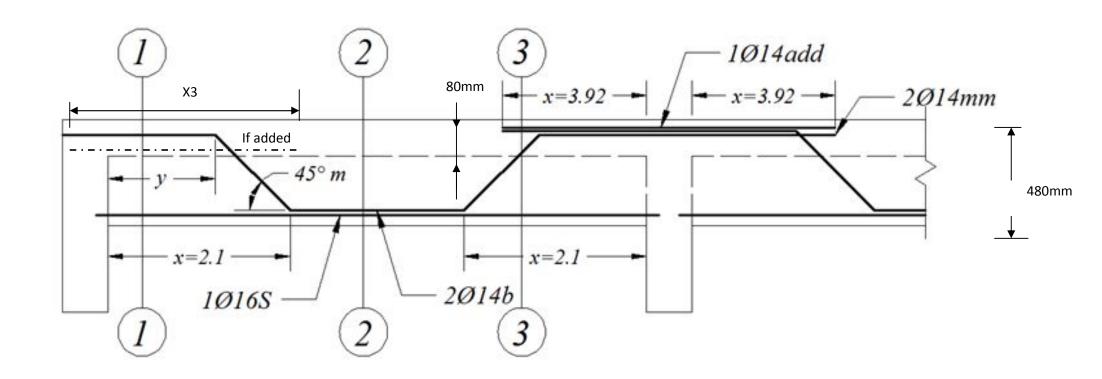
checking Ø(redaction factor)

$$\begin{split} \rho_t &= 0.85 * \beta_1 * \frac{fc^{'}}{fy} * \frac{\epsilon_{cu}}{\epsilon_{cu} + 0.005} = 0.85 * 0.83 * \frac{30}{350} * \frac{3}{8} \\ &= 0.0227 \\ \text{all } \rho < \rho_t \rightarrow \ \emptyset = 0.9 \text{ o. k} \end{split}$$

Checking slab for shear

max shear force
$$V_u = 1.15 * \frac{W_u^-}{2} * L_n = 1.15 * \frac{9.07*10}{2} = 52.12 \text{ kN}$$

$$V_{ud} = V_u - \overline{W_u} * d = 52.12 - 9.07 * 0.455 = 48.02 \text{ kN}$$


$$V_c = 0.17 \sqrt{fc'} * b_w * d * \underbrace{1.1}_{ACI \ 8.11.8}$$

$$= 0.17 * \sqrt{30} * 0.15 * 0.455 * 10^3 * 1.1 = 70 \text{kN}$$

$$\frac{V_{ud}}{\emptyset} = \frac{48.02}{0.75} = 64 \text{ kN}$$

$$\frac{V_{\rm ud}}{\emptyset} = 64 \text{ kN} < V_{\rm c} = 70 \text{ kN} \to \text{o. k}$$

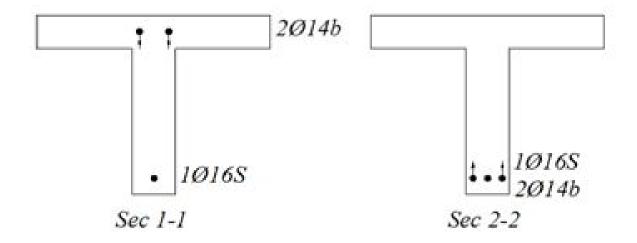
Distribution of reinforcement:-

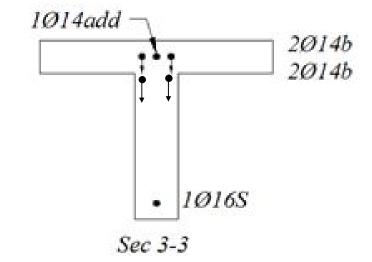
+Reinf=453 mm²

$$2\emptyset14$$
mm(bent) + $\left(\emptyset16$ mm sraight > $\frac{1}{4}$ As⁺ $\right) \rightarrow$ As⁺
= 509 mm² > 453 mm² \therefore o. k

-Reinf at interior support 758 mm²

 $2\emptyset14$ mm bent (left) = 308mm²


 $2\emptyset 14 \text{ mm bent (right)} = 308 \text{mm}^2$


1014 additional = 154mm²

 $\Sigma As = 770 \text{mm}^2 > 758 \text{mm}^2 : \text{ o. k}$

-Reinf at exterior support 273 mm²

 $2014 \text{mm bent} \rightarrow \text{As}^- = 308 \text{ mm}^2 > 273 \text{ mm}^2 \text{ o. k}$

Cut off and bent point

$$+ \textbf{Reinf \% bent up} = \frac{2\emptyset 14 = 308}{2\emptyset 14 + 1\emptyset 16 = 509} = 0.6$$

$$= 60\% \text{ (graph } + \frac{1}{14}\text{)}$$

$$x_1 = 0.21 * L_n = 0.21 * 10 = 2.1\text{m}$$

$$- \textbf{Reinf (interier)\% cut off} = 100\% \text{ grapgh } \left(-\frac{1}{9}\right)$$

$$x_2 = 0.33 * 10$$

$$+ \text{ max.} \left(d = 0.455,12\text{db}\right)$$

$$= (12 * 0.014 = 0.168), \left(\frac{L_n}{16} = \frac{10}{16} = 0.625\right) = 3.92\text{m}$$

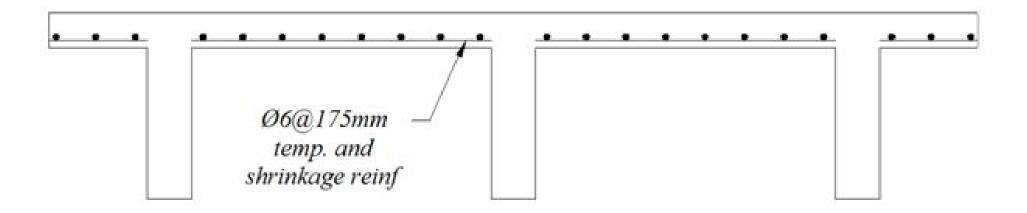
-Reinf (exterior)% cut off = 100% grapg
$$\left(-\frac{1}{24}\right)$$

$$x_3 = 0.092 * L_n + max. \left(d, 12d_b, \frac{L_n}{16}\right) = 1.54m$$

$$y = x_1 - [(d - cover)/tan(45)] = 2.1 - \frac{(0.455 - 0.025)}{tan 45}$$

$$= 1.67 \mathrm{m}$$

$$y > x_3 \rightarrow o.k$$


if y < x (use cut not bent)

Temperature and shrinkage reinf. top slab

$$As_{min}=0.002 b*t$$
 for fy=300 MPa

$$=0.002*1000*80=160$$
mm²/m width

use welded wire fabric Ø6@175mm

