Stair ways

Types:

- 1. Stair ways to acts as cantilever slab.
- 2. Stair ways to acts as simple slab:
 - a) Stair with supports along the side.
 - b) Stair with supports upon the ends.

tread

.7m

nosing

Limitations:

- 1.Minimum width of a stairway is 110cm.
- 2. Maximum rise of step is 200mm.
- 3. Minimum rise of step is 165mm.
- 4. Minimum run of step (exclusive nosing)=240mm
- 5.For step without nosing the sum of rise and run is at least 445mm.
- 6. Maximum height of straight flight between landings is 3.7m.
- 7.For stairways serving as exits ^{landing} from places of assembly, maximum height 2.5m.

- 8.Number of stairways in floor within a building is governed by:
- a) Width of stairway.
- b) The number of probable occupants.
- c) Dimensions of floor area.
- 9. The distance from any point in open floor area to the nearest stairway shall not exceed 30m.

Live load on stairway:

In stair each (55cm width* 1.5 tread) occupied one person (person weight 0.9-1.25kN) In landing each 0.325m² occupied one person

Example:

Given:

Width=1.1m, height=3m, additional dead load=6 kN/m length, additional live load=6 kN/m length, $\gamma_{concrete} = 24.5$ kN/m³, fy=300 MPa, fc'=25MPa.

Assume rise=175mm run=270mm

No. of stairs=3000/175=17.143

Let rise=176mm, \rightarrow No. of stairs=17 step

$$\theta = \tan^{-1} \frac{176}{270} = 33.11^{\circ}$$

$t_{min} = L/20 = 4.6/20 = 0.23m$

Dead load of slab=0.23*1.1*(1/cos33.11)*24.5=7.4kN/m of horizontal projection

Dead load of step= $\frac{0.176*0.27}{2} * 1.1 * 17 * 24.5 * \frac{1}{4.6} = 2.4 \frac{kN}{m}$

Assume live load of each person=1.25kN

$$\left(\frac{110}{55} * \frac{17}{1.5}\right) * 1.25 * \frac{1}{4.6} = 6.2kN/m \text{ of horizontal}$$
$$\sum WD = 7.4 + 2.4 + 6 = 15.8kN/m$$
$$\sum WL = 6.2 + 6 = 12.2kN/m$$
$$Wu = 1.2 * 15.8 + 1.6 * 12.2 = 38.48kN/m$$

$\omega = 0.1042 < \omega_{max} = 0.364\beta 1 = 0.364 * 0.85$ $= 0.309 \ O.K$

$$\rho = \omega \frac{fy}{fc'} = 0.1042 * \frac{300}{25} = 0.00868$$

As= $0.00868*1100*205=1958 \text{ mm}^2(\text{main})$ reinforcement)>As_{min}= $0.002*230*1100=506 \text{ mm}^2 \text{ O.K}$ Shrinkage and temperature reinforcement= $0.002*230*5492=2527 \text{ mm}^2$

Example:

Given:

Width=2m , additional dead load=2 kN/m², additional live load=2 kN/m², $\gamma_{concrete} = 25$ kN/m³, fy=300 MPa, fc'=20MPa., weight of person=1kN, rise=180mm, run=270mm, No. of steps=15

Solution:

 $t_{min} = L/20 = 4000/20 = 200 mm$

Loads on stair:

Dead load of slab= $0.2*2*(1/\cos 34)*25=12$ kN/m of horizontal projection

Dead load of step=
$$\frac{0.18*0.27}{2} * 2 * 15 * 25 * \frac{1}{4} = 4.6 kN/m$$

 $\sum WD = 12 + 4.6 + 2 * 2 = 20.6 kN/m$
 $WL = \left(\frac{200}{55} * \frac{15}{1.5}\right) * 1.0 * \frac{1}{4} = 10 kN/m \ of \ horizontal$

$$\sum WL = 10 + 2 * 2 = 14kN/m$$

$$Wu = 1.2 * 20.6 + 1.6 * 14 = 47.12kN/m$$
Loads on landing:

$$WD = \frac{0.2 * 1.5 * 2 * 25}{1.5} = 10 \ kN/m$$

$$WL = \frac{1.5 * 2}{0.325} * 1.0 * \frac{1}{1.5} = 6.15 \ kN/m$$

$$\sum WD = 10 + 2 * 2 = 14kN/m$$

$$\sum WL = 6.15 + 2 * 2 = 10.15kN/m$$

$$Wu_D = 1.2 * 14 = 16.8/m$$

$Wu_L = 1.6 * 10.15 = 16.24 kN/m$

Wu = 16.8 + 16.24 = 33.04 kN/m

Case A: determine max. Positive moment

- Stair should be loaded by full(design)load
- Landings should be loaded by dead load
- Max. Positive moment=75.34kN.m

Check for shear:

$$d=t-25=200-25=175 \text{ mm}$$

$$Vu_{max} = 94.24 - 47.12 * 0.175 = 86kN$$

$$\frac{Vu_{max}}{\emptyset b d} = \frac{86 * 10^{-3}}{0.75 * 2 * 0.175} = 0.327MPa$$

16.8kN/m

1,5

Case B: determine max. <u>Negative moment</u>

Max. Negative moment=37.28kN.m

Μ	R	ω	ρ	$As = \rho bd$
Positive=75.34	0.0682	0.0712	0.00474	1659 mm^2
Negative=37.28	0.0338	0.0345	0.0023	805 mm ²
		<ω _{max} O.K		$>As_{min} =$ 0.002*2000*200 =800 mm ²

Main reinforcement:

- Positive: use 9Φ16mm
- Negative: use $4\Phi16mm$