Stair ways

Types:

1.Stair ways to acts as cantilever slab.
2.Stair ways to acts as simple slab:
a) Stair with supports along the side.
b) Stair with supports upon the ends.

Limitations:

1.Minimum width of a stairway is 110 cm .
2. Maximum rise of step is 200 mm .
3. Minimum rise of step is 165 mm .
4.Minimum run of step (exclusive nosing) $=240 \mathrm{~mm}$
5.For step without nosing the sum of rise and run is at least 445 mm .
6. Maximum height of straight flight between landings is 3.7 m .
7.For stairways serving as exits landing from places of assembly, maximum height 2.5 m .
8. Number of stairways in floor within a building is governed by:
a) Width of stairway.
b) The number of probable occupants.
c) Dimensions of floor area.
9. The distance from any point in open floor area to the nearest stairway shall not exceed 30 m .

Live load on stairway:

In stair each (55 cm width* 1.5 tread) occupied one person (person weight $0.9-1.25 \mathrm{kN}$)
In landing each $0.325 \mathrm{~m}^{2}$ occupied one person

Example:

Given:

Width $=1.1 \mathrm{~m}$, height $=3 \mathrm{~m}$, additional dead load $=6 \mathrm{kN} / \mathrm{m}$ length, additional live load $=6 \mathrm{kN} / \mathrm{m}$ length, $\gamma_{\text {concrete }}=24.5 \mathrm{kN} / \mathrm{m}^{3}$, $\mathrm{fy}=300 \mathrm{MPa}, \mathrm{fc}^{\prime}=25 \mathrm{MPa}$.

Solution:

Assume rise $=175 \mathrm{~mm}$
run=270mm

No. of stairs $=3000 / 175=17.143$

Let rise $=176 \mathrm{~mm}, \rightarrow$ No. of stairs $=17$ step
$\theta=\tan ^{-1} \frac{176}{270}=33.11^{\circ}$

$\mathrm{t}_{\text {min }}=\mathrm{L} / 20=4.6 / 20=0.23 \mathrm{~m}$

Dead load of slab $=0.23 * 1.1 *(1 / \cos 33.11) * 24.5=7.4 \mathrm{kN} / \mathrm{m}$ of horizontal projection
Dead load of step $=\frac{0.176 * 0.27}{2} * 1.1 * 17 * 24.5 * \frac{1}{4.6}=2.4 \frac{\mathrm{kN}}{\mathrm{m}}$
Assume live load of each person $=1.25 \mathrm{kN}$
$\left(\frac{110}{55} * \frac{17}{1.5}\right) * 1.25 * \frac{1}{4.6}=6.2 \mathrm{kN} / \mathrm{m}$ ofhorizontal
$\sum W D=7.4+2.4+6=15.8 \mathrm{kN} / \mathrm{m}$
$\sum W L=6.2+6=12.2 \mathrm{kN} / \mathrm{m}$
$W u=1.2 * 15.8+1.6 * 12.2=38.48 \mathrm{kN} / \mathrm{m}$
$M_{\max }=\frac{W l^{2}}{8}=\frac{38.48 * 4.6^{2}}{8}=101.8 \mathrm{kN} . \mathrm{m}$
$\mathrm{d}=\mathrm{t}-25=230-25=205 \mathrm{~mm}$

Check for shear:

$V=\frac{38.48 * 4.6}{2}-38.48 * 0.205 * \cos 33.11=81.9 \mathrm{kN}$
$\frac{V_{u}}{\varnothing b d}=\frac{81.9 * 10^{-3}}{0.75 * 1.1 * \frac{0.205}{\cos 33.11}}=0.405 M P a$
$V_{c}=\frac{1}{6} \sqrt{f c^{\prime}}=\frac{1}{6} \sqrt{25}=0.833 \mathrm{MPa}$
$R=\frac{M u}{\emptyset f c^{\prime} b d^{2}}=\frac{101 * 10^{-3}}{0.9 * 25 * 1.1 * 0.205^{2}}=0.0978$
Stair ways

$$
\begin{aligned}
\omega= & 0.1042<\omega_{\max }=0.364 \beta 1=0.364 * 0.85 \\
& =0.309 \text { O.K }
\end{aligned}
$$

$\rho=\omega \frac{f y}{f c^{\prime}}=0.1042 * \frac{300}{25}=0.00868$
As $=0.00868 * 1100 * 205=1958 \mathrm{~mm}^{2}$ (main reinforcement) $>\mathrm{As}_{\text {min }}=0.002 * 230 * 1100=506 \mathrm{~mm}^{2}$ O.K

Shrinkage and temperature reinforcement $=0.002 * 230 * 5492=2527 \mathrm{~mm}^{2}$

Example:

Given:

Width $=2 \mathrm{~m}$, additional dead load $=2 \mathrm{kN} / \mathrm{m}^{2}$, additional live load $=2 \mathrm{kN} / \mathrm{m}^{2}, \gamma_{\text {concrete }}=25 \mathrm{kN} / \mathrm{m}^{3}$, fy $=300 \mathrm{MPa}, \mathrm{fc}{ }^{\prime}=20 \mathrm{MPa}$., weight of person $=1 \mathrm{kN}$, rise $=180 \mathrm{~mm}$, run $=270 \mathrm{~mm}$, No. of steps $=15$

Solution:

$\mathrm{t}_{\text {min }}=\mathrm{L} / 20=4000 / 20=200 \mathrm{~mm}$

Loads on stair:

Dead load of slab $=0.2 * 2 *(1 / \cos 34) * 25=12 \mathrm{kN} / \mathrm{m}$ of horizontal projection
Dead load of step $=\frac{0.18 * 0.27}{2} * 2 * 15 * 25 * \frac{1}{4}=4.6 \mathrm{kN} / \mathrm{m}$
$\sum W D=12+4.6+2 * 2=20.6 \mathrm{kN} / \mathrm{m}$
$W L=(\overbrace{\frac{200}{55}}^{=4} * \frac{15}{1.5}) * 1.0 * \frac{1}{4}=10 \mathrm{kN} / \mathrm{m}$ of horizontal
$\sum W L=10+2 * 2=14 \mathrm{kN} / \mathrm{m}$
$W u=1.2 * 20.6+1.6 * 14=47.12 \mathrm{kN} / \mathrm{m}$
Loads on landing:
$\mathrm{WD}=\frac{0.2 * 1.5 * 2 * 25}{1.5}=10 \mathrm{kN} / \mathrm{m}$
$\mathrm{WL}=\frac{1.5 * 2}{0.325} * 1.0 * \frac{1}{1.5}=6.15 \mathrm{kN} / \mathrm{m}$
$\sum W D=10+2 * 2=14 \mathrm{kN} / \mathrm{m}$
$\sum W L=6.15+2 * 2=10.15 \mathrm{kN} / \mathrm{m}$
$W u_{D}=1.2 * 14=16.8 / m$

$$
\begin{aligned}
& W u_{L}=1.6 * 10.15=16.24 \mathrm{kN} / \mathrm{m} \\
& W u=16.8+16.24=33.04 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Case A: determine max. Positive moment

- Stair should be loaded by full(design)load
- Landings should be loaded by dead load

Max. Positive moment $=75.34 \mathrm{kN}$.m
Check for shear:
$\mathrm{d}=\mathrm{t}-25=200-25=175 \mathrm{~mm}$
$V u_{\max }=94.24-47.12 * 0.175=86 k N$
$\frac{V u_{\max }}{\emptyset b d}=\frac{86 * 10^{-3}}{0.75 * 2 * 0.175}=0.327 M P a$
$V_{c}=\frac{1}{6} \sqrt{f c^{\prime}}=\frac{1}{6} \sqrt{20}=$
$0.745 \mathrm{MPa}>\frac{V u_{\text {max }}}{\phi b d}=$ 0.327MPa O.K

Case B: determine max. Negative moment

Max. Negative moment=37.28kN.m

M	R	ω	ρ	$\mathrm{As}=\rho \mathrm{bd}$
Positive $=75.34$	0.0682	0.0712	0.00474	$1659 \mathrm{~mm}^{2}$
Negative=37.28	0.0338	0.0345	0.0023	$805 \mathrm{~mm}^{2}$
		$<\omega_{\max }$		$>\mathrm{As}_{\min }=$
		$\mathrm{O.K}$		$0.002 * 2000 * 200$
				$=800 \mathrm{~mm}^{2}$

Main reinforcement:

- Positive: use 9Ф16mm
- Negative: use $4 \Phi 16 \mathrm{~mm}$

