1.3 Moment of a Force

Moment is ability of the force to produce twisting or turning a body about an axis.

$\boldsymbol{M}=\boldsymbol{F} \cdot \boldsymbol{d}$
where:
M: The moment of the force (N.m).

F: Applied force (N).
d: is the perpendicular distance from the axis moment to the line of action of the force.

Units: kN.m, N.m, N.mm (1 kN = 1000 N)

Sign Convention:

we will be taking clockwise as positive moment

Principle of moments:

The moment of a force with respect to any axis (or point) is equal to the algebraic sum of the moments of its components with respect to the same axis.
$\boldsymbol{M}=\sum \boldsymbol{F} \cdot \boldsymbol{d}$
For Example: moment about point O
${ }^{-} M_{O}=\sum F \cdot d$
$M_{O}=F_{1 x} \cdot y_{1}-F_{1 y} \cdot x_{1}+F_{2 x} \cdot y_{2}+F_{3 y} \cdot x_{3}$

Example No. 1: Calculate the magnitude of the moment about the base point O of the $600-\mathrm{N}$ force.

Solution:
$F_{x}=600 \cos 40=460 \mathrm{~N} \rightarrow$
$F_{y}=600 \sin 40=386 N \downarrow$
${ }^{+} M_{o}=\sum F \cdot d$

$M_{o}=460 \times 4+386 \times 2=2610 \mathrm{~N} . \mathrm{m}$

Example No. 2: Compute the moment of a 100 N force applied on a cantilever beam about the fixed end A as shown in Figure.

Solution:
Resolving the force along x and y directions.

${ }^{+} M_{A}=\sum F \cdot d$
$M_{A}=100 \sin 30 \times(3+0.5)-100 \cos 30 \times 0.25$
$M_{A}=153.35 \mathrm{~N} . \mathrm{m}$

Example No. 3: If the resultant moment about point A is (480 N.m) clockwise. Determine the magnitude of F_{3} ?

Solution:

$F_{1 x}=300 \sin 30=150 N \rightarrow$
$F_{1 y}=300 \cos 30=259.88 N \downarrow$
$F_{2 x}=400 \times \cos 60=200 N \leftarrow$
$F_{2 y}=400 \times \sin 60=346.41 N \downarrow$
$c=\sqrt{3^{2}+4^{2}}=5$
$F_{3 x}=F_{3} \times \frac{3}{5}=0.6 F_{3} N \rightarrow$
$F_{3 y}=F_{3} \times \frac{4}{5}=0.8 F_{3} N \downarrow$

${ }^{+} M_{A}=\sum F \cdot d$
$480=F_{1 y} \times 0.2+F_{2 y} \times 0.5-F_{3 x} \times 0.4+F_{3 y} \times 0.5$
$480=259.88 \times 0.2+346.41 \times 0.5-0.6 F_{3} \times 0.4+0.8 F_{3} \times 0.5$
$F_{3}=\frac{480-225.167}{0.16}=159.27 \mathrm{~N} \searrow$

Problems:

1. Determine the moment of the force about O in each case.

(a)

(b)

(c)
Answer: $(\boldsymbol{a}) M_{O}=76.6 \mathrm{~N} . \mathrm{m}$?
(b) $M_{O}=64.3 \mathrm{~N} . \mathrm{m} ?$,
(c) $M_{O}=100 \mathrm{~N} . \mathrm{m} ?$
2. Compute the moment of a 200 N force applied as shown in Figure, about points A and B .

Answer: $M_{A}=848.528 \mathrm{~N} . \mathrm{m} \bigcap, M_{B}=565.685 \mathrm{~N} . \mathrm{m}$
3. Determine the resultant moment produced by the forces about point O .

Answer: $M_{O}=1253.55 \mathrm{~N} . \mathrm{m}$
4. Determine the moment of the forces about O.

Answer: $M_{O}=2.460 \mathrm{kN} . \mathrm{m}$

