Chemical Engineering Principles-I

Material Balances

2.1 Introduction to Material Balances

A material balance is nothing more than the application of the law of the conservation of mass: "Matter is neither created nor destroyed" "التوازن المادي هو تطبيق لقانون الحفاظ على الكتلة: "المادة لا تخلق ولا تدمر

Open and Closed Systems

نعني بالنظام أي جزء من أو عملية كاملة تريد وضعها في الاعتبار للتحليل. يمكاك تحديد نظام مثل المفاعل ، قسم من الأنبوب a. System أو يمكاك تحديد حدود النظام عن طريق رسم حدود النظام ، أي الخط الذي يحبط بجزء العملية الذي تريد تحليله

By system we mean any arbitrary portion of or a whole process that you want to consider for analysis. You can define a system such as a reactor, a section of a pipe. Or, you can define the limits of the system by drawing the system boundary, namely a line that encloses the portion of the process that you want to analyze. b. Closed System Figure 1 shows a two-dimensional view of a three-dimensional vessel holding 1000 kg of $\mathrm{H}_{2} \mathrm{O}$. Note that material neither enters nor leaves the vessel, that is, no material crosses the system boundary. Changes can take place inside the system, but for a closed system, no mass exchange occurs with the surroundings.

Figure 1 Closed system.
c. Open System

Figure 2 is an example of an open system (also called a flow system) because material crosses the system boundary.

Figure 2 Open steady - state system.

Steady-State and Unsteady-State Systems

a. Steady - State System

Because the rate of addition of water is equal to the rate of removal, the amount of water in the vessel shown in Figure 2 remains constant at its original value (1000 kg). We call such a process or system a steady - state process or a steady - state system because

1. The unchanged with timeconditions inside the process (specifically the amount of water in the vessel in Figure 2), and تظل الظروف العملية دون تغيير مع مرور الوقتremain
.تظل ظروف التيارات التتدفقة ثابتة مع مرور الوقت
2. The conditions of the flowing streams remain constant with time.

Thus, in a steady-state process, by definition all of the conditions in the process (e.g., temperature, pressure, mass of material, flow rate, etc.) remain constant with time. A continuous process is one in which material enters and/or leaves the system without interruption. العملية المستمرة هي العملية التي تدخل فيها المادة و / أو تغادر النظام دون انقطاع. b. Unsteady - State System

Because the amount of water in the system changes with time (Figure 3), the process and system are deemed
to be an unsteady - state (transient) process. نظرا لأن كية المياه في النظام تتغير بمرور الوقت ، فإن العلية والنظام يعتبران عملية غير مستقرة
For an unsteady-state process, not all of the conditions in the process (e.g., temperature, pressure, mass of material, etc.)
remain constant with time, and/or the flows in and out of the system can vary with time.

Figure 3 Initial conditions for an open unsteady - state system with accumulation.

- Figure 4 shows the system after 50 minutes of accumulation (Fifty minutes of accumulation at $10 \mathrm{~kg} / \mathrm{min}$ amounts to 500 kg of total accumulation).

Figure 4 The condition of the open unsteady - state system with accumulation after 50 minutes.

Figures 5 and 6 demonstrate negative accumulation.
Note that the amount of water in the system decreases with time at the rate of $10 \mathrm{~kg} / \mathrm{min}$. Figure 6.6 shows the system after 50 minutes of operation.

Figure 5 Initial conditions for an unsteady - state process with negative accumulation.

Figure 6 Condition of the open unsteady - state system with negative accumulation after 50 minutes.
\square The material balance for a single component process is

$$
\left\{\begin{array}{c}
\text { Accumulation of material } \\
\text { within the system }
\end{array}\right\}=\left\{\begin{array}{c}
\text { Total flow into } \\
\text { the system }
\end{array}\right\}-\left\{\begin{array}{c}
\text { Total flow out } \\
\text { of the system }
\end{array}\right\} \cdots 6.1
$$

Equation 6.1 can apply to moles or any quantity that is conserved. As an example, look at Figure 6.7 in which we have converted all of the mass quantities in Figure 2 to their equivalent values in moles.

Figure 7 The system in Figure 2 with the flow rates shown in kg mol.
If the process is in in the steady state, the accumulation term by definition is zeroEquation 6.1 simplifies to a famous truism

$$
\text { What goes in must come out } \quad(\mathrm{In}=\mathrm{Out})
$$

If you are analyzing an unsteady-state process, the accumulation term over a time interval can be calculated as

$$
\{\text { Accumulation }\}=\left\{\begin{array}{c}
\text { Final material } \tag{6.3}\\
\text { in the system }
\end{array}\right\}-\left\{\begin{array}{c}
\text { Initial material } \\
\text { in the system }
\end{array}\right\}
$$

The times you select for the final and initial conditions can be anything, but you usually select an interval such as 1 minute or 1 hour rather than specific times.

When you combine Equations 6.1 and 6.3 you get the general material balance for a component in the system in the absence of reaction
absence of reaction

$$
\left\{\begin{array}{c}
\text { Final material } \\
\text { in the system } \\
\text { at } \mathbf{t}_{2}
\end{array}\right\}-\left\{\begin{array}{c}
\text { Initial material } \\
\text { in the system } \\
\text { at } t_{1}
\end{array}\right\}=\left\{\begin{array}{c}
\text { Flow into } \\
\text { the system } \\
\text { from } t_{1} \text { to } t_{2}
\end{array}\right\}-\left\{\begin{array}{c}
\text { Flow out of } \\
\text { the system } \\
\text { from } t_{1} \text { to } t_{2}
\end{array}\right\} \ldots 6.4
$$

Example 1

Will you save money if instead of buying premium 89 octane gasoline at $\$ 1.269$ per gallon that has the octane you want, you blend sufficient 93 octane supreme gasoline at $\$ 1.349$ per gallon with 87 octane regular gasoline at $\$ 1.149$ per gallon? Solution

Choose a basis of 1 gallon of 89 octane gasoline, the desired product. The system is the gasoline tank.

- For simplicity, assume that no gasoline exists in the tank at the start of the blending, and one gallon exists in the tank at the end of the blending.
- This arrangement corresponds to an unsteady-state process. Clearly it is an open system.

The initial number of gallons in the system is zero and the final number of gallons is one.

Let $x=$ the number of gallons of 87 octane gasoline added, and $y=$ the number of gallons of 93 octane added to the blend. Since $x+y=1$ is the total flow into the tank,
$\therefore \mathrm{y}=1-\mathrm{x}$
According to Equation (6.4) the balance on the octane number is

$$
\begin{aligned}
& \text { Accumulation } \\
& \left.\left|\frac{89 \text { octane }}{1 \mathrm{gal}}\right| \frac{1 \mathrm{gal}}{}-0=\left|\frac{87 \text { octane }}{1 \mathrm{gal}}\right| \frac{x \mathrm{gal}}{}+\left|\frac{93 \text { octane }}{1 \mathrm{gal}}\right| \right\rvert\,(1-x) \mathrm{gal}
\end{aligned}
$$

The solution is $x=2 / 3 \mathrm{gal}$ and thus $\mathrm{y}=1-\mathrm{x}=1 / 3 \mathrm{gal}$.

The cost of the blended gasoline is $(2 / 3)(\$ 1.149)+(1 / 3)(\$ 1.349)=\$ 1.216 \mathrm{~A}$
value less than the cost of the 89 octane gasoline (\$1.269).

Multiple Component Systems

Suppose the input to a vessel contains more than one component ${ }_{c h}$ as $100 \mathrm{~kg} / \mathrm{min}$ of a 50% water and 50% sugar (sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}, \mathrm{MW}=342.3$) mixture (see Figure 8). The mass balances with respect to the sugar and water, balances that we call component balances.

Figure 8 An open system involving two components.

For Example, look at the mixer shown in Figure 9, an apparatus that mixes two streams to increase the concentration of NaOH in a dilute solution. The mixer is a steady - state open system empty again.
 $\underline{F}_{2}=1000 \mathrm{~kg} / \mathrm{hr}$ as the basis; the numbers for this example would not change - just the units would change. Here are the components and total balances in kg :

	Flow in				
Balances	$\boldsymbol{F}_{\mathbf{1}}$	$\boldsymbol{F}_{\mathbf{2}}$		Flow out	Accum.
NaOH	450	500	950	$=0$	
$\mathrm{H}_{2} \mathrm{O}$	$\frac{8,550}{}$	$\frac{500}{}$	$\underline{9,050}$	$=0$	
Total	9,000	1,000		10,000	$=0$

We can convert the kg shown in Figure 6.9 to kg moles by dividing each compound by its respective molecular weight $\left(\mathrm{NaOH}=40\right.$ and $\left.\mathrm{H}_{2} \mathrm{O}=18\right)$.

$$
\begin{aligned}
& \mathrm{NaOH}: \quad \frac{450}{40}=11.25 \quad \frac{500}{40}=12.50 \quad \frac{950}{40}=23.75 \\
& \mathrm{H}_{2} \mathrm{O}: \quad \frac{8550}{18}=475 \quad \frac{500}{18}=27.78 \quad \frac{9050}{18}=502.78
\end{aligned}
$$

Then the component and total balances in kg mol are:

	Flow in			
Balances	$\boldsymbol{F}_{\mathbf{1}}$	$\boldsymbol{F}_{\mathbf{2}}$	Flow out	Accum.
NaOH	11.25	12.50	23.75	$=0$
$\mathrm{H}_{2} \mathrm{O}$	$\frac{475}{}$	$\underline{27.78}$	$\underline{502.78}$	$=0$
Total	486.25	40.28	536.53	$=0$

Figure 9 Mixing of a dilute stream of NaOH with a concentrated stream of NaOH . Values below the stream arrows are based on 1 hour of operation.

Example 2

Centrifuges are used to separate particles in the range of 0.1 to $100 \mu \mathrm{~m}$ in diameter from a liquid using centrifugal force. Yeast cells are recovered from a broth (a liquid mixture containing cells) using a tubular centrifuge (a cylindrical system rotating about a cylindrical axis). Determine the amount of the cell-free discharge per hour if $1000 \mathrm{~L} / \mathrm{hr}$ is fed to the centrifuge, the feed contains 500 mg cells $/ \mathrm{L}$, and the product stream contains $50 \mathrm{wt} . \%$ cells. Assume that the feed has a density of $1 \mathrm{~g} / \mathrm{cm}^{3}$.

Solution

This problem involves a steady state, open (flow) system without reaction.

$$
\text { Basis }=1 \text { hour }
$$

Figure E6. 2
M.B. on cells

In (mass) $=$ Out (mass)
$\left.\xrightarrow{1000 \mathrm{~L} \text { feed }}\left|\frac{500 \mathrm{mg} \text { cells } \mathrm{s}}{1 \mathrm{~L} \text { feed }}\right| \frac{1 \mathrm{~g}}{1000 \mathrm{mg}}=\frac{0.5 \mathrm{~g} \text { cells } \mathrm{s}}{1 \mathrm{~g} P} \right\rvert\, \underline{P \mathrm{~g}}$
$\mathrm{P}=1000 \mathrm{~g}$
M.B. on fluid

In (mass) $=$ Out (mass)
$-1000 \mathrm{~L}\left|\frac{1000 \mathrm{~cm}^{3}}{1 \mathrm{~L}}\right| \frac{1 \mathrm{~g} \text { fluid }}{1 \mathrm{~cm}^{3}}=1000 \mathrm{~g} P \cdot \frac{0.50 \mathrm{~g} \text { fluid }}{1 \mathrm{~g} P}+D \mathrm{~g}$ fluid
$D=\left(10^{6}-500\right) g$

Accounting for Chemical Reactions in Material Balances

Chemical reaction in a system requires the augmentation of Equation 6.4 to take into account the effects of the reaction. To illustrate this point, look at Figure 10, which shows a steady - state system in which HC1 reacts with NaOH by the following reaction:

$$
\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaC1}+\mathrm{H}_{2} \mathrm{O}
$$

Figure 10 Reactor for neutralizing HC 1 with NaOH .

Equation 4 must be augmented to include terms for the generation and consumption of components by the chemical reaction in the system as follows

$$
\left\{\begin{array}{c}
\text { Accumulation } \\
\text { within the } \\
\text { system }
\end{array}\right\}=\left\{\begin{array}{c}
\text { Input } \\
\text { through } \\
\text { the system } \\
\text { boundaries }
\end{array}\right\}-\left\{\begin{array}{c}
\text { Output } \\
\text { through } \\
\text { the system } \\
\text { boundaries }
\end{array}\right\}+\left\{\begin{array}{c}
\text { Generation } \\
\text { within the } \\
\text { system }
\end{array}\right\}-\left\{\begin{array}{c}
\text { Consumption } \\
\text { within the } \\
\text { system }
\end{array}\right\}
$$

Material Balances for Batch and Semi-Batch Processes

كمية ثابتة

- A batch process is used to process a fixed amount of material each time it is operated. Initially, the material to be processed is charged into the system. After processing of the material is complete, the products are removed.
- Batch processes are used industrially for speciality processing applications (e.g., producing pharmaceutical products), which typically operate at relatively low production rates.
- Look at Figure11a that illustrates what occurs at the start of a batch process, and after thorough mixing, the final solution remains in the system (Figure 11b).

Figure 11b The final state of a batch mixing process.

Figure 11a The initial state of a batch mixing process.
عملية تشغيل افتر اضبة

- We can summarize the hypothetical operation of the batch as a flow system (open system) as follows (Figure 12):

Final conditions: All values $=0$
Flows out:

$$
\begin{aligned}
& \mathrm{NaOH}=1,000 \mathrm{lb} \\
& \underline{\mathrm{H}}_{2} \underline{\mathrm{O}}=9,000 \mathrm{lb}
\end{aligned}
$$

Total $=10,000 \mathrm{lb}$ Initial conditions: All value $=0$
Flows in:
$\mathrm{NaOH}=1,000 \mathrm{lb}$
$\underline{H}_{2} \mathrm{O}=9,000 \mathrm{lb}$
Total 10,000 lb

Figure 12 The batch process in Figure 11 represented as an open system.

```
Chemical Engineering Principles-2
```

المواد تـخل اثثـاء التشغيل

In a semi-batch process material enters the process during its operation, but does not leave. Instead mass is allowed to لا تخر ج الىى بعد انتهاء العطلية . A figure 13 illustrates a semi-batch mixing process. Initially the vessel is empty (Figure 13a). Figure13b shows the semi-batch system after 1 hour of operation. Semi-batch processes are open and unsteady - state.

Only flows enter the systems, and none leave, hence the system is an unsteady state - one that you can treat
as having continuous flows, as follows:

Final conditions:
Flows out: All values $=0$

$$
\begin{aligned}
& \mathrm{NaOH}=1,000 \mathrm{lb} \\
& \mathrm{H}_{2} \underline{\mathrm{O}}=9,000 \mathrm{lb}
\end{aligned}
$$

$$
\text { Total }=10,000 \mathrm{lb}
$$

Flows in:

$$
\begin{aligned}
& \mathrm{NaOH}=1,000 \mathrm{lb} \\
& \underline{\mathrm{H}}_{2} \underline{\mathrm{O}}=9,000 \mathrm{lb}
\end{aligned}
$$

Initial conditions: All values $=0$

$$
\text { Total }=10,000 \mathrm{lb}
$$

Figure 13b

Condition of a semi-batch mixing process Figure 6.13 Initial condition for the semi-batch mixing after 1 hour of operation. process. Vessel is empty.
Example 3
A measurement for water flushing of a steel tank originally containing motor oil showed that 0.15 percent by weight of the original contents remained on the interior tank surface. What is the fractional loss of oil before flushing with water, and the pounds of discharge of motor oil into the environment during of a $10,000 \mathrm{gal}$ tank truck that carried motor oil? (The density of motor oil is about $0.80 \mathrm{~g} / \mathrm{cm}^{3}$).

Solution
Basis: 10,000 gal motor oil at an assumed $77^{\circ} \mathrm{F}$

The initial mass of the motor oil in the tank was
$(10000 \mathrm{gal})(3.785 \mathrm{lit} / 1 \mathrm{gal})\left(1000 \mathrm{~cm}^{3} / 1 \mathrm{lit}\right)\left(0.8 \mathrm{~g} / \mathrm{cm}^{3}\right)(1 \mathrm{lb} / 454 \mathrm{~g})=66700 \mathrm{lb}$
The mass fractional loss is 0.0015 . The oil material balance is

Initial	unloaded		residual discharged on cleaning
66,700	66,700 (0.9985)	+	66,700 (0.0015) Thus,

Chemical Engineering Principles-I

Questions

1. Is it true that if no material crosses the boundary of a system, the system is a closed system?
2. Is mass conserved within an open process? 3. Can an accumulation be negative? What does a negative accumulation mean? ظروف
3. Under what circumstances can the accumulation term in the material balance be zero for a process?
4. Distinguish between a steady-state and an unsteady-state process
5. What is a transient process? Is it different than an unsteady-state process?
6. Does Equation 6.4 apply to a system involving more than one component?
7. When a chemical plant or refinery uses various feeds and produces various products, does Equation 6.4 apply to each component in the plant?
8. What terms of the general material balance, Equation (6.5), can be deleted if
a. The process is known to be a steady-state process.
b. The process is carried out inside a closed vessel.
c. The process does not involve a chemical reaction.
9. What is the difference between a batch process and a closed process?
10. What is the difference between a semi-batch process and a closed process?
11. What is the difference between a semi-batch process and an open process?

Answers:

1. Yes
2. Not necessarily - accumulation can occur
3. Yes; depletion الاستنز اف
4. No reaction (a) closed system, or (b) flow of a component in and out are equal.
5. In an unsteady-state system, the state of the system changes with time, whereas with a steady-state system, it does not.
6. A transient process is an unsteady-state process.
7. Yes
8. Yes
9. (a) Accumulation; (b) flow in and out; (c) generation and consumption
10. None
11. A flow in occurs
12. None, except in a flow process, usually flows occur both in and out

Problems

1. Here is a report from a catalytic polymerization unit:

Charge:	Pounds per hour	Propanes
and butanes	15,500	
Production:	5,680	
Propane and lighter	2,080	
Butane	missing	

What is the production in pounds per hour of the polymer?

Chemical Engineering Principles-I
2. A plant discharges $4,000 \mathrm{gal} / \mathrm{min}$ of treated wastewater that contains $0.25 \mathrm{mg} / \mathrm{L}$ of PCB , (polychloronated biphenyls) into a river that contains no measurable PCBs upstream of the discharge. If the river flow rate is 1,500 cubic feet per second, after the discharged water has thoroughly mixed with the river water, what is the concentration of PCBs in the river in mg / L ?
($3.785 \mathrm{lit} / 1 \mathrm{gal}$)

Answers:

1. $7,740 \mathrm{lb} / \mathrm{hr}$
2. $1.49 * 10^{-3} \mathrm{mg} / \mathrm{L}$.

2.2 General Strategy for Solving Material Balance Problems

Problem Solving

An orderly method of analyzing problems and presenting their solutions represents training in logical thinking that is of considerably greater value than mere knowledge of how to solve a particular type of problem.
The Strategy for Solving Problems

1. Read and understand the problem statement.
2. Draw a sketch of the process and specify the system boundary.
3. Place labels for unknown variables and values for known variables on the sketch.
4. Obtain any missing needed data.
5. Choose a basis.
6. Determine the number of unknowns.
7. Determine the number of independent equations, and carry out a degree of freedom analysis.
8. Write down the equations to be solved.
9. Solve the equations and calculate the quantities asked for.
10. Check your answer.

Example 4

A thickener in a waste disposal unit of a plant removes water from wet sewage sludge as shown in Figure 10. How many kilograms of water leave the thickener per 100 kg of wet sludge that enter the thickener? The process is in the steady state.

Water = ?

Figure 10

Solution
Basis: 100 kg wet sludge
The system is the thickener (an open system). No accumulation, generation, or consumption occurs. The total mass balance is

$$
\underline{\text { In }}=\frac{\text { Out }}{100 \mathrm{~kg}=70 \mathrm{~kg}+\mathrm{kg} \text { of water Consequently, }}
$$

the water amounts to 30 kg .

Example 5

A continuous mixer mixes NaOH with $\mathrm{H}_{2} \mathrm{O}$ to produce an aqueous solution of NaOH . Determine the composition and flow rate of the product if the flow rate of NaOH is $1000 \mathrm{~kg} / \mathrm{hr}$, and the ratio of the flow rate of the $\mathrm{H}_{2} \mathrm{O}$ to the product solution is 0.9 . For this process,

1. Sketch of the process is required.
2. Place the known information on the diagram of the process.
3. What basis would you choose for the problem?
4. How many unknowns exist?
5. Determine the number of independent equations.
6. Write the equations to be solved.
7. Solve the equations.
8. Check your answer.

Solution

1. The process is an open one, and we assume it to be steady state.

Figure E7.2
2. Because no contrary information is provided about the composition of the $\mathrm{H}_{2} \mathrm{O}$ and NaOH streams, we will assume that they are $100 \% \mathrm{H}_{2} \mathrm{O}$ and NaOH , respectively.

3. Basis (1000 kg or 1 hour or $1000 \mathrm{~kg} / \mathrm{hr}$) (all are equivalent)
4. We do not know the values of four variables: $\mathrm{W}, \mathrm{P}^{\mathrm{P}} \mathrm{P}_{\mathrm{NaOH}}$ and $\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}$.
5. You can write three material balances:

- one for the NaOH
- one for the $\mathrm{H}_{2} \mathrm{O}$
- one total balance (the sum of the two component balances)

Only two are independent.
Chemical Engineering Principles-I
Dr.Ali H.Abbar

Note: You can write as many independent material balances as there are species involved in the system. 6.
Material balance: in $=$ out \quad or \quad in - out $=0$

$$
\begin{array}{lccc}
\mathrm{NaOH} \text { balance: } & 1000=P_{\mathrm{NaOH}} & \text { or } & 1000-P_{\mathrm{NaOH}}=0 \\
\mathrm{H}_{2} \mathrm{O} \text { balance: } & W=P_{\mathrm{H}_{2} \mathrm{O}} & \text { or } & W-P_{\mathrm{H}_{2} \mathrm{O}}=0 \\
\text { Given ratio: } & W=0.9 P & \text { or } & W-0.9 P=0 \\
\text { Sum of components in } P: P_{\mathrm{NaOH}}+P_{\mathrm{H}_{2} \mathrm{O}}=P \text { or } P_{\mathrm{NaOH}}+P_{\mathrm{H}_{2} \mathrm{O}}-P=0 \tag{4}
\end{array}
$$

Could you substitute the total mass balance $1000+\mathrm{W}=\mathrm{P}$ for one of the two component mass balances? Of course In fact, you could calculate P by solving just two equations:

$$
\begin{aligned}
\text { Total balance: } & & 1000+W & =P \\
\text { Given ratio: } & & W & =0.9 P
\end{aligned}
$$

7. Solve equations:

$W=0.9 \mathrm{P}$ substitute in total balance $1000+0.9 \mathrm{P}=\mathrm{P}$

$$
\left.\therefore \mathrm{P}=10000 \mathrm{~kg} \& \mathrm{~W}=0.9 * 10000=9000 \mathrm{~kg} \quad \text { (The basis is still } 1 \mathrm{hr}\left(\mathrm{~F}_{\mathrm{NaOH}}=1000 \mathrm{~kg}\right)\right)
$$

From these two values you can calculate the amount of $\mathrm{H}_{2} \mathrm{O}$ and NaOH in the product

$$
\text { From the }\left\{\begin{array} { l }
{ \mathrm { NaOH } \text { balance: } } \\
{ \mathrm { H } _ { 2 } \mathrm { O } \text { balance: } }
\end{array} \text { you get } \left\{\begin{array}{l}
P_{\mathrm{NaOH}}=1000 \mathrm{~kg} \\
P_{\mathrm{H}_{2} \mathrm{O}}=9000 \mathrm{~kg}
\end{array}\right.\right.
$$

Then

$$
\begin{aligned}
\omega_{\mathrm{NaOH}}^{P} & =\frac{1000 \mathrm{~kg} \mathrm{NaOH}}{10,000 \mathrm{~kg} \mathrm{Total}}=0.1 \\
\omega_{\mathrm{H}_{2} \mathrm{O}}^{P} & =\frac{9,000 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}{10,000 \mathrm{~kg} \text { Total }}=0.9
\end{aligned}
$$

$$
\omega_{\mathrm{NaOH}}^{P}+\omega_{\mathrm{H}_{2} \mathrm{O}}^{P}=1
$$

8. The total balance would have been a redundant balance, and could be used to check the answers

$$
\begin{aligned}
& P_{\mathrm{NaOH}}+P_{\mathrm{H} 2 \mathrm{O}}=\dot{P} \\
& 1,000+9,000=10,000
\end{aligned}
$$

Note: After solving a problem, use a redundant equation to check your values.

Degree of Freedom Analysis

The phrase degrees of freedom have evolved from the design of plants in which fewer independent equations than unknowns exist. The difference is called the degrees of freedom available to the designer to specify flow rates, equipment sizes, and so on. You calculate the number of degrees of freedom $\left(\mathrm{N}_{\mathrm{D}}\right)$ as follows:

Degrees of freedom = number of unknowns - number of independent equations

$$
\mathrm{N}_{\mathrm{D}}=\mathrm{N}_{\mathrm{U}}-\mathrm{N}_{\mathrm{E}}
$$

When you calculate the number of degrees of freedom you ascertain the solve ability of a problem. Three outcomes exist:

Case	N_{D}	Possibility of Solution
$\mathrm{N}_{\mathrm{U}}=\mathrm{N}_{\mathrm{E}}$	0	Exactly specified (determined); a solution exists

Dr.Ali H.Abbar

$\mathrm{N}_{\mathrm{U}}>\mathrm{N}_{\mathrm{E}}$	>0	Under specified (determined); more independent equations required
$\mathrm{N}_{\mathrm{U}}<\mathrm{N}_{\mathrm{E}}$	<0	Over specified (determined)

For the problem in Example 6,

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{U}}=4 \\
& \mathrm{~N}_{\mathrm{E}}=4
\end{aligned}
$$

So that

$$
N_{D}=N_{U}-N_{E}=4-4=0
$$

And a unique solution exists for the problem.

Example 7

A cylinder containing $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$, and N_{2} has to be prepared containing a CH_{4} to $\mathrm{C}_{2} \mathrm{H}_{6}$ mole ratio of 1.5 to 1 . Available to prepare the mixture is (l) a cylinder containing a mixture of $80 \% \mathrm{~N}_{2}$ and $20 \% \mathrm{CH}_{4}$, (2) a cylinder containing a mixture of $90 \% \mathrm{~N}_{2}$ and $10 \% \mathrm{C}_{2} \mathrm{H}_{6}$, and (3) a cylinder containing pure N_{2}. What is the number of degrees of freedom, i.e., the number of independent specifications that must be made, so that you can determine the respective contributions from each cylinder to get the desired composition in the cylinder with the three components?

Solution

A sketch of the process greatly helps in the analysis of the degrees of freedom. Look at Figure 11.

Figure 11

Do you count seven unknowns - three values of x_{i} and four values of F_{i} ? How many independent equations can be written?

- Three material balances: $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$, and N_{2}
\bullet One specified ratio: moles of CH_{4} to $\mathrm{C}_{2} \mathrm{H}_{6}$ equal 1.5 or $\left(\mathrm{X}_{\text {СН4 }} / \mathrm{X}_{\mathrm{C2}}\right.$ 此 $)=1.5$
- One summation of mole fractions: $\sum \mathrm{X}_{\mathrm{i}}{ }^{\mathrm{F}_{4}}=1$

Thus, there are seven minus five equals two degrees of freedom $\left(N_{D}=N_{U}-N_{E}=7-5=2\right)$. If you pick a basis, such as $\mathrm{F}_{4}=1$, one other value has to be specified to solve the problem to calculate composition of F_{4}.

Example 8
In the growth of biomass $\mathrm{CH}_{1.8} \mathrm{O}_{0.5} \mathrm{~N}_{0.16} \mathrm{~S}_{0.0045} \mathrm{P}_{0.0055}$, with the system comprised of the biomass and the substrate, the substrate contains the carbon source for growth, $\mathrm{C}_{\alpha} \mathrm{H}_{\beta} \mathrm{O}_{\gamma}$, plus $\mathrm{NH}_{3}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{H}_{3} \mathrm{PO}_{4}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$. The relations between the elements and the compounds in the system are:

$\mathbf{C H}_{\mathbf{1 . 8}} \mathbf{O}_{\mathbf{0 . 5}} \mathbf{N}_{\mathbf{0 . 1 6}} \mathbf{S}_{\mathbf{0 . 0 0 4 5}} \mathbf{P}_{\mathbf{0 . 0 0 5 5}}$	$\mathbf{C}_{\boldsymbol{\alpha}} \mathbf{H}_{\boldsymbol{\beta}} \mathbf{O}_{\boldsymbol{\gamma}}$	$\mathbf{N H}_{\mathbf{3}}$	$\mathbf{O}_{\mathbf{2}}$	$\mathbf{C O}_{\mathbf{2}}$	$\mathbf{H}_{\mathbf{2}} \mathbf{O}$	$\mathbf{H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}$	$\mathbf{H}_{\mathbf{3}} \mathbf{P O}_{\mathbf{4}}$	
C	1	α	0	0	1	0	0	0
H	1.8	β	3	0	0	2	2	3
O	0.5	γ	0	2	2	1	4	4
N	0.16	0	1	0	0	0	0	0
S	0.0045	0	0	0	0	0	1	0
P	0.0055	0	0	0	0	0	0	1

How many degrees of freedom exist for this system (assuming that the values of α, β, and γ are specified)?

Solution

Based on the given data six element balances exist for the 8 species present, hence the system has two degrees of freedom.
Questions

1. What does the concept "solution of a material balance problem" mean?
2. (a) How many values of unknown variables can you compute from one independent material balance?
(b) From three independent material balance equations?
(c) From four material balances, three of which are independent?
3. If you want to solve a set of independent equations that contain fewer unknown variables than equations (the over specified problem), how should you proceed with the solution?
4. What is the major category of implicit constraints (equations) you encounter in material balance problems?
5. If you want to solve a set of independent equations that contain more unknown variable than equations (the underspecified problem), what must you do to proceed with the solution?

Answers:

1. A solution means a (possibly unique) set of values for the unknowns in a problem that satisfies the equations formulated in the problem.
2. (a) one; (b) three; (c) three.
3. Delete nonpertinent equations, or find additional variables not included in the analysis.
4. The sum of the mass or mole fraction in a stream or inside a system is unity.
5. Obtain more equations or specifications, or delete variables of negligible importance.

Problems

1. A water solution containing 10% acetic acid is added to a water solution containing 30% acetic acid flowing at the rate of $20 \mathrm{~kg} / \mathrm{min}$. The product P of the combination leaves the rate of $100 \mathrm{~kg} / \mathrm{min}$. What is the composition of P? For this process,
a. Determine how many independent balances can be written.
b. List the names of the balances.
c. Determine how many unknown variables can be solved for.
d. List their names and symbols.
e. Determine the composition of P .
2. Can you solve these three material balances for F, D, and P? Explain why not.

Dr.Ali H.Abbar

$$
\begin{aligned}
& 0.1 F+0.3 D=0.2 P \\
& 0.9 F+0.7 D=0.8 P \\
& F+D=P
\end{aligned}
$$

3. How many values of the concentrations and flow rates in the process shown in Figure SAT7.2P3 are unknown?

List them. The streams contain two components, 1 and 2.

Figure SAT7.2P3
4. How many material balances are needed to solve problem 3? Is the number the same as the number of unknown variables? Explain.

Answers:

1. (a) Two; (b) two of these three: acetic acid, water, total; (c) two; (d) feed of the 10% solution (say F) and mass fraction ω of the acetic acid in P; (e) 14% acetic acid and 86% water
2. Not for a unique solution because only two of the equations are independent.
3. $\mathrm{F}, \mathrm{D}, \mathrm{P}, \omega_{\mathrm{D} 2}, \omega_{\mathrm{P} 1}$
4. Three unknowns exist. Because only two independent material balances can be written for the problem, one value of F, D, or P must be specified to obtain a solution. Note that specifying values of $\omega_{\mathrm{D} 2}$ or $\omega_{\mathrm{P} 1}$ will not help.

2.3_Solving Material Balance Problems for Single Units without Reaction

The use of material balances in a process allows you (a) to calculate the values of the total flows and flows of
species in the streams that enter and leave the plant equipment, and (b) to calculate the change of conditions inside the equipment.

Example 9

Determine the mass fraction of Streptomycin in the exit organic solvent assuming that no water exits with the solvent and no solvent exits with the aqueous solution. Assume that the density of the aqueous solution is $1 \mathrm{~g} / \mathrm{cm}^{3}$ and the density of the organic solvent is $0.6 \mathrm{~g} / \mathrm{cm}^{3}$. Figure E8. 1 shows the overall process.

Solution

This is an open (flow), steady-state process without reaction. Assume because of the low concentration of Strep. in the aqueous and organic fluids that the flow rates of the entering fluids equal the flow rates of the exit fluids.

Dr.Ali H.Abbar

Figure E8.1
Basis: 1 min
Basis: Feed $=200 \mathrm{~L}$ (flow of aqueous entering aqueous solution)

- Flow of exiting aqueous solution (same as existing flow)
- Flow of exiting organic solution (same as existing flow)

The material balances are in = out in grams. Let x be the g of Strep per L of solvent S Strep. balance:

$$
\underline{200 \mathrm{~L} \text { of } \mathrm{A}}\left|\frac{10 \mathrm{~g} \text { Strep }}{1 \mathrm{~L} \text { of } \mathrm{A}}+\frac{10 \mathrm{~L} \text { of } \mathrm{S}}{}\right| \frac{0 \mathrm{~g} \text { Strep }}{1 \mathrm{~L} \text { of } \mathrm{S}}=\frac{200 \mathrm{~L} \text { of } \mathrm{A}}{}\left|\frac{0.2 \mathrm{~g} \mathrm{Strep}}{1 \mathrm{~L} \text { of } \mathrm{A}}+\frac{10 \mathrm{~L} \text { of } \mathrm{S}}{}\right| \frac{x \mathrm{~g} \text { Strep }}{1 \mathrm{~L} \text { of } \mathrm{S}}
$$

$\mathrm{x}=196 \mathrm{~g}$ Strep/L of solvent
To get the g Strep/g solvent, use the density of the solvent:

$$
\frac{196 \mathrm{~g} \mathrm{Strep}}{1 \mathrm{~L} \text { of } \mathrm{S}}\left|\frac{1 \mathrm{~L} \text { of } \mathrm{S}}{1000 \mathrm{~cm}^{3} \text { of } \mathrm{S}}\right| \frac{1 \mathrm{~cm}^{3} \text { of } \mathrm{S}}{0.6 \mathrm{~g} \text { of } \mathrm{S}}=0.3267 \mathrm{~g} \mathrm{Strep} / \mathrm{g} \text { of } \mathrm{S}
$$

The mass fraction Strep $=\frac{0.3267}{1+0.3267}=0.246$

Example 10

Membranes represent a relatively new technology for the separation of gases. One use that has attracted attention is the separation of nitrogen and oxygen from air. Figure E8.2a illustrates a nanoporous membrane that is made by coating a very thin layer of polymer on a porous graphite supporting layer. What is the composition of the waste stream if the waste stream amounts to 80% of the input stream?

Figure E8.2a

Solution

This is an open, steady-state process without chemical reaction.

Basis: $100 \mathrm{~g} \mathrm{~mol}=\mathrm{F}$
Basis: $\mathrm{F}=100$

$$
\begin{array}{lll}
\text { Specifications: } & n_{\mathrm{O}_{2}}^{F}=0.21(100)=21 & \\
& n_{\mathrm{N}_{2}}^{F}=0.79(100)=79 & \\
& y_{\mathrm{O}_{2}}^{P}=n_{\mathrm{O}_{2}}^{P} / P=0.25 & n_{\mathrm{O}_{2}}^{P}=0.25 P \\
& y_{\mathrm{N}_{2}}^{P}=n_{\mathrm{N}_{2}}^{P} / P=0.75 & n_{\mathrm{N}_{2}}^{P}=0.75 P \\
& W=0.80(100)=80 &
\end{array}
$$

Material balances: O_{2} and N_{2}

$$
\text { Implicit equations: } \Sigma n_{i}^{W}=W \text { or } \Sigma y_{i}^{W}=1
$$

$$
\begin{array}{lllll}
& \frac{\text { In }}{} \begin{array}{llll}
\text { Out } & & \text { In } & \\
0_{2}: & 0.21(100) & =0.25 P+y_{\mathrm{O}_{2}}^{W}(80) & \text { or } \\
& 0.21(100) & & =0.25 P+n_{\mathrm{O}_{2}}^{W} \\
\mathrm{~N}_{2}: & 0.79(100) & =0.75 P+y_{\mathrm{N}_{2}}^{W}(80) & \text { or } \\
& 0.79(100) & & =0.75 P+n_{\mathrm{N}_{2}}^{W} \\
& 1.00 & =y_{\mathrm{O}_{2}}^{W}+y_{\mathrm{N}_{2}}^{W} & \text { or } 80
\end{array} & =n_{\mathrm{O}_{2}}^{W}+n_{\mathrm{N}_{2}}^{W}
\end{array}
$$

The solution of these equations is
$n_{\mathrm{O}_{2}}^{\mathrm{W}}=16$ and $n_{\mathrm{N}_{2}}^{\mathrm{W}}=64$, or $y_{\mathrm{O}_{2}}^{W}=0.20$ and $\quad y_{\mathrm{N}_{2}}^{W}=0.80$, and $P=20 \mathrm{~g} \mathrm{~mol}$.
Check: total balance $100=20+80$ OK

${ }^{\text {TM }}$ Another method for solution

The overall balance is easy to solve because
$\mathrm{F}=\mathrm{P}+\mathrm{W} \quad$ or $\quad 100=\mathrm{P}+80$
Gives $\mathrm{P}=20$ straight off. Then, the oxygen balance would be

$$
0.21(100)=0.25(20)+n_{O_{2}}^{W}
$$

$n_{\mathrm{O}_{2}}^{W}=16 \mathrm{~g} \mathrm{~mol}$, and $n_{\mathrm{O}_{2}}^{W}=80-16=64 \mathrm{~g} \mathrm{~mol}$.

Note (Example 10)

$$
n_{\mathrm{O}_{2}}^{F}+n_{\mathrm{N}_{2}}^{F}=F
$$

is a redundant equation because it repeats some of the specifications.

Chemical Engineering Principles-I
Dr.Ali H.Abbar

Also, $\quad n_{\mathrm{O}_{2}}^{P}+n_{\mathrm{N}_{2}}^{P}=$ As redundant. Divide the equation by P to get $y_{\mathrm{O}_{2}}^{P}+y_{\mathrm{N}_{2}}^{P}=$ a delation that is equivalent to the sum of two of the specifications.

Example 11

A novice manufacturer of ethyl alcohol (denoted as EtOH) for gasohol is having a bit of difficulty with a distillation column. The process is shown in Figure E8.3. It appears that too much alcohol is lost in the bottoms (waste). Calculate the composition of the bottoms and the mass of the alcohol lost in the bottoms based on the data shown in Figure E8.3 that was collected during 1 hour of operation.

Solution

The process is an open system, and we assume it is in the steady state. No reaction occurs.

Figure E8.3
Basis: 1 hour so that $\mathrm{F}=1000 \mathrm{~kg}$ of feed We
are given that P is $(1 / 10)$ of F , so that $\mathrm{P}=0.1(1000)=100 \mathrm{~kg}$

Basis: $\mathrm{F}=1000$
kg

$$
m_{\mathrm{EtOH}}^{F}=1000(0.10)=100
$$

Specifications:

$$
\begin{aligned}
& m_{\mathrm{H}_{2} \mathrm{O}}^{F}=1000(0.90)=900 \\
& m_{\mathrm{EtOH}}^{P}=0.60 P \\
& m_{\mathrm{H}_{2} \mathrm{O}}^{P}=0.40 P
\end{aligned}
$$

$\mathrm{P}=(0.1)(\mathrm{F})=100 \mathrm{~kg}$
Material balances: EtOH and $\mathrm{H}_{2} \mathrm{O}$

Implicit equations:

$$
\Sigma m_{i}^{B}=B \text { or } \Sigma \omega_{i}^{B}=1
$$

The total mass balance:

$$
\begin{gathered}
F=P+B \\
B=1000-100=900 \mathrm{~kg}
\end{gathered}
$$

The solution for the composition of the bottoms can then be computed directly from the material balances: Chemical Engineering Principles-I

Dr.Ali H.Abbar

	kg feed in	$k g$ distillate out	kg bottoms out	Mass fraction
EtOH balance:	$0.10(1000)-0.60(100)$	$=40$	0.044	
$\mathrm{H}_{2} \mathrm{O}$ balance:	$0.90(1000)-0.40(100)$	$=\underline{860}$	$\underline{0.956}$	
			900	1.000

As a check let's use the redundant equation

$$
\begin{gathered}
m_{\mathrm{EtOH}}^{B}+m_{\mathrm{H}_{2} \mathrm{O}}^{B}=B \quad \text { or } \quad \omega_{\mathrm{EtOH}}^{B}+\omega_{\mathrm{H}_{2} \mathrm{O}}^{B}=1 \\
40+860=900=\mathrm{B}
\end{gathered}
$$

Example 12

You are asked to prepare a batch of 18.63% battery acid as follows. A tank of old weak battery acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ solution contains $12.43 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (the remainder is pure water). If 200 kg of $77.7 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ is added to the tank, and the final solution is to be $18.63 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, how many kilograms of battery acid have been made? See Figure E8.4.

Figure E8.4
Solution

1. An unsteady-state process (the tank initially contains sulfuric acid solution).

$$
\text { Accumulation }=\mathrm{In}-\text { Out }
$$

2. Steady-state process (the tank as initially being empty)

$$
\text { In }=\text { Out } \quad(\text { Because no accumulation occurs in the tank) } 1)
$$

Solve the problem with the mixing treated as an unsteady-state process.

$$
\text { Basis }=200 \mathrm{~kg} \text { of A }
$$

Material balances: $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$ The balances will be in kilograms.

Type of Balance	Accumulation in Tank		In	Out	
Final	Initial				
	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$P(0.1863)$	-	$F(0.1243)$	$=$
$\mathrm{H}_{2} \mathrm{O}$	$P(0.8137)$	-	$F(0.8757)$	$=\cdot$	$200(0.777)$
Total	P	-	F	$=$	0

Note that any pair of the three equations is independent. $\mathrm{P}=2110 \mathrm{~kg}$ acid $\& \mathrm{~F}=1910 \mathrm{~kg}$ acid.
2) The problem could also be solved by considering the mixing to be a steady-state process.

	$\frac{A \text { in }}{}$		F in		$\frac{P \text { out }}{}$
$\mathrm{H}_{2} \mathrm{SO}_{4}$	$200(0.777)$	+	$\mathrm{F}(0.1243)$		$\mathrm{P}(0.1863)$
$\mathrm{H}_{2} \mathrm{O}$	$200(0.223)$	+	$\mathrm{F}(0.8757)$	$=$	$\mathrm{P}(0.8137)$
Total	A	+	F		P

Note: You can see by inspection that these equations are no different than the first set of mass balances except for the arrangement and labels.

Example 13

In a given batch of fish cake that contains 80% water (the remainder is dry cake), 100 kg of water is removed, and it is found that the fish cake is then 40% water. Calculate the weight of the fish cake originally put into the dryer. Figure E8.5 is a diagram of the process.

*Bone Dry Cake
Figure E8.5

Solution

This is a steady-state process without reaction.
Basis: 100 kg of water evaporated $=\mathrm{W}$
$\left.\begin{array}{lll} & \frac{I n}{} & \frac{O u t}{B+W=B+100} \\ \text { Total balance: } & A \\ \text { BDC balance: } & 0.20 A & =0.60 B\end{array}\right\}$ mass balances
$\mathrm{A}=150 \mathrm{~kg}$ initial cake and $\mathrm{B}=(150)(0.20 / 0.60)=50 \mathrm{~kg}$ Check
via the water balance: $0.80 \mathrm{~A}=0.40 \mathrm{~B}+100$

$$
\begin{gathered}
0.80(150) \approx 0.40(50)+100 \\
120=120
\end{gathered}
$$

Note

In Example 8.5 the BDC in the wet and dry fish cake is known as a tie component because the BDC goes from a single stream in the process to another single stream without loss, addition, or splitting.

Example 14

A tank holds $10,000 \mathrm{~kg}$ of a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ at $30^{\circ} \mathrm{C}$. You want to crystallize from this solution 3000 kg of $\mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{O}$ without any accompanying water. To what temperature must the solution be cooled? You definitely need solubility data for $\mathrm{Na}_{2} \mathrm{CO}_{3}$ as a function of the temperature:

Temp. $\left({ }^{\circ} \mathrm{C}\right)$$\quad$| Solubility |
| :---: |
| $\left(\mathrm{g} \mathrm{Na}_{2} \mathrm{CO}_{3} / 100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)$ |

Solution

No reaction occurs. Although the problem could be set up as a steady-state problem with flows in and out of the system (the tank), it is equally justified to treat the process as an -unsteady-state process.

Crystals Removed
Because the initial solution is saturated at $30^{\circ} \mathrm{C}$, you can calculate the composition of the initial solution:

$$
\frac{38.8 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}{38.8 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}+100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.280 \text { mass fraction } \mathrm{Na}_{2} \mathrm{CO}_{3}
$$

Next, you should calculate the composition of the crystals.
Basis: $1 \mathrm{~g} \mathrm{~mol} \mathrm{Na} 2 \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{O}$

Comp.	Mol	Molwt.	Mass	Mass fr
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	1	106	106	0.371
$\mathrm{H}_{2} \mathrm{O}$	10	18	$\underline{180}$	$\underline{0.629}$
Total			286	1.00

Basis: $10,000 \mathrm{~kg}$ of saturated solution at $30^{\circ} \mathrm{C}$

An unsteady-state problem, the mass balance reduces to (the flow in $=0$)

$$
\text { Accumulation }=\mathrm{In}-\text { Out }
$$

Basis: $I=10,000 \mathrm{~kg}$

Material balances: $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}$

$$
\omega_{i}^{I} I=m_{i}^{I}, \omega_{i}^{F} F=m_{i}^{F}, \text { and } \omega_{i}^{C} C=m_{i}^{C}
$$

Note that

Accumulation in Tank

	$\underline{\text { Final }}$			$\underline{\text { Initial }}$	
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	$m_{\mathrm{Na}_{2} \mathrm{CO}_{3}}^{F}$	-	$10,000(0.280)$	$=$	$-3000(0.371)$
$\mathrm{H}_{2} \mathrm{O}$	$m_{\mathrm{H}_{2} \mathrm{O}}^{F}$	-	$10,000(0.720)$	$=$	$-3000(0.629)$
Total	F	-	10,000	$=$	-3000

The solution for the composition and amount of the final solution is

Component	$k g$
$m_{\mathrm{Na}_{2} \mathrm{CO}_{3}}^{F}$	1687
$m_{\mathrm{H}_{2} \mathrm{O}}^{F}$	$\underline{5313}$
(total)	7000

Check using the total balance: $\quad 7,000+3,000=10,000$

To find the temperature of the final solution,

$$
\frac{1,687 \mathrm{~kg} \mathrm{Na}_{2} \mathrm{CO}_{3}}{5,313 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}=\frac{31.8 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}{100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}
$$

Thus, the temperature to which the solution must be cooled lies between $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$. By linear interpolation

$$
30^{\circ} \mathrm{C}-\frac{38.8-31.8}{38.8-21.5}\left(10.0^{\circ} \mathrm{C}\right)=26^{\circ} \mathrm{C}
$$

Example 14

This example focuses on the plasma components of the streams: water, uric acid (UR), creatinine (CR), urea (U), P, K, and Na. You can ignore the initial filling of the dialyzer because the treatment lasts for an interval of two or three hours. Given the measurements obtained from one treatment shown in Figure E8.7b, calculate the grams per liter of each component of the plasma in the outlet solution.

Solution

This is an open steady-state system. Basis: 1 minute

- The entering solution is assumed to be essentially water.

The water balance in grams, assuming that I mL is equivalent to 1 gram, is:

$$
1100+1700=1200+S_{\text {water }}^{\text {out }} \quad \text { hence: } \quad S_{\text {water }}^{\text {out }}=1600 \mathrm{~mL}
$$

The component balances in grams are:

	g / L	
UR:	$1.1(1.16)+0=1.2(0.060)+1.6 S_{\mathrm{UR}}^{\text {out }}$	$S_{\mathrm{UR}}^{\text {out }}=0.75$
CR:	$1.1(2.72)+0=1.2(0.120)+1.6 S_{\mathrm{CR}}^{\text {out }}$	$S_{\mathrm{CR}}^{\text {out }}=1.78$
U:	$1.1(18)+0=1.2(1.51)+1.6 S_{\mathrm{U}}^{\text {out }}$	$S_{\mathrm{U}}^{\text {out }}=11.2$
P:	$1.1(0.77)+0=1.2(0.040)+1.6 S_{\mathrm{P}}^{\text {out }}$	$S_{\mathrm{P}}^{\text {out }}=0.50$
K:	$1.1(5.77)+0=1.2(0.120)+16 S_{\mathrm{K}}^{\text {out }}$	$S_{\mathrm{K}}^{\text {out }}=3.8$
Na:	$1.1(13.0)+0=1.2(3.21)+1.6 S_{\mathrm{Na}}^{\text {out }}$	$S_{\mathrm{Na}}^{\text {out }}=6.53$

Questions

1. Answer the following questions true or false:
a. The most difficult part of solving material balance problems is the collection and formulation of the data specifying the compositions of the streams into and out of the system, and of the material inside the system.
b. All open processes involving two components with three streams involve zero degrees of freedom.
c. An unsteady-state process problem can be analyzed and solved as a steady-state process problem.
d. If a flow rate is given in $\mathrm{kg} / \mathrm{min}$, you should convert it to $\mathrm{kg} \mathrm{mol} / \mathrm{min}$.
2. Under what circumstances do equations or specifications become redundant?

Answers:

1. (a) T ; (b) F ; (c) T ; (d) F
2. When they are not independent.

Problems

1. A cellulose solution contains 5.2% cellulose by weight in water. How many kilograms of 1.2% solution are required to dilute 100 kg of the 5.2% solution to 4.2% ?
2. A cereal product containing 55% water is made at the rate of $500 \mathrm{~kg} / \mathrm{hr}$. You need to dry the product so that it contains only 30% water. How much water has to be evaporated per hour?
3. If 100 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is dissolved in 200 g of $\mathrm{H}_{2} \mathrm{O}$ and the solution is cooled until 100 g of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ crystallizes out; find (a) the composition of the remaining solution (the mother liquor) and (b) the grams of crystals recovered per 100 g of initial solution.
4. Salt in crude oil must be removed before the oil undergoes processing in a refinery. The crude oil is fed to a washing unit where freshwater fed to the unit mixes with the oil and dissolves a portion of the salt contained in the oil. The oil (containing some salt but no water), being less dense than the water, can be removed at the top of the washer. If the "spent" wash water contains 15% salt and the crude oil contains 5% salt, determine the concentration of salt in the "washed" oil product if the ratio of crud oil (with salt) to water used is $4: 1$.

Answers:

1. 33.3 kg
2. $178 \mathrm{~kg} / \mathrm{hr}$
3. (a) $28 \% \mathrm{Na}_{2} \mathrm{SO}_{4}$; (b) 33.3
4. Salt: 0.00617; Oil: 0.99393 .
2.4 The Chemical Reaction Equation and Stoichiometry

Stoichiometry

- The stoichiometric coefficients in the chemical reaction equation

$$
\mathrm{C}_{7} \mathrm{H}_{16}(\ell)+11 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 7 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2}\left(\mathrm{O}(\mathrm{~g}) \mathrm{C}_{7} \mathrm{H}_{16}, 11 \text { for } \mathrm{O}_{2} \text { and so on }\right) .
$$

- Another way to use the chemical reaction equation is to indicate that 1 mole of CO_{2} is formed from each (1/7) mole of $\mathrm{C}_{7} \mathrm{H}_{16}$, and 1 mole of $\mathrm{H}_{2} \mathrm{O}$ is formed with each (7/8) mole of CO_{2}. The latter ratios indicate the use of stoichiometric ratios in determining the relative proportions of products and reactants.

For example how many kg of CO_{2} will be produced as the product if 10 kg of $\mathrm{C}_{7} \mathrm{H}_{16}$ react completely with the stoichiometric quantity of O_{2} ? On the basis of 10 kg of $\mathrm{C}_{7} \mathrm{H}_{6}$

$$
\underline{10 \mathrm{~kg} \mathrm{C}_{7} \mathrm{H}_{16}}\left|\frac{1 \mathrm{~kg} \mathrm{~mol} \mathrm{C}}{7} \mathrm{H}_{16}\right| \frac{7 \mathrm{~kg} \mathrm{~mol} \mathrm{CO}_{2}}{100.1 \mathrm{~kg} \mathrm{C}_{7} \mathrm{H}_{16}}\left|\frac{44.0 \mathrm{~kg} \mathrm{CO}_{2}}{1 \mathrm{~kg} \mathrm{~mol} \mathrm{C}} 77 \mathrm{H}_{16}\right| \frac{1 \mathrm{~kg} \mathrm{~mol} \mathrm{CO}}{2} \text {. } \mathrm{kg} \mathrm{CO}_{2}
$$

Example 15

The primary energy source for cells is the aerobic catabolism (oxidation) of glucose ($\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, a sugar). The overall oxidation of glucose produces CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ by the following reaction

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+a \mathrm{O}_{2} \rightarrow b \mathrm{CO}_{2}+c \mathrm{H}_{2} \mathrm{O}
$$

Determine the values of a, b, and c that balance this chemical reaction equation. Solution

Basis: The given reaction

By inspection, the carbon balance gives $b=6$, the hydrogen balance gives $c=6$, and an oxygen balance 6

$$
+2 \mathrm{a}=6 * 2+6
$$

Gives $\mathrm{a}=6$. Therefore, the balanced equation is

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

Example 16
In the combustion of heptane, CO_{2} is produced. Assume that you want to produce 500 kg of dry ice per hour, and that 50% of the CO_{2} can be converted into dry ice, as shown in Figure E9.2. How many kilograms of heptane must be burned per hour? (MW: $\mathrm{CO}_{2}=44$ and $\left.\mathrm{C}_{7} \mathrm{H}_{16}=100.1\right)$

Figure E9.2

Solution

The chemical equation is

$$
\mathrm{C}_{7} \mathrm{H}_{16}+11 \mathrm{O}_{2} \rightarrow 7 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

Basis: 500 kg of dry ice (equivalent to 1 hr) The
calculation of the amount of $\mathrm{C}_{7} \mathrm{H}_{16}$ can be made in one sequence:

$$
\left.\stackrel{500 \mathrm{~kg} \text { dry ice }}{ }\left|\frac{1 \mathrm{~kg} \mathrm{CO}_{2}}{0.5 \mathrm{~kg} \text { dry ice }}\right| \frac{1 \mathrm{~kg} \mathrm{~mol} \mathrm{CO}}{2} \right\rvert\,
$$

Example 17

A limestone analyses (weight \%): $\mathrm{CaCO}_{3} 92.89 \%, \mathrm{MgCO}_{3} 5.41 \%$ and Inert 1.70% By heating the limestone you recover oxides known as lime.
(a) How many pounds of calcium oxide can be made from 1 ton of this limestone?
(b) How many pounds of CO_{2} can be recovered per pound of limestone?
(c) How many pounds of limestone are needed to make 1 ton of lime?

Mol. Wt.: $\mathrm{CaCO}_{3}(100.1) \quad \mathrm{MgCO}_{3}(84.32) \quad \mathrm{CaO}(56.08) \quad \mathrm{MgO}(40.32) \quad \mathrm{CO}_{2}(44.0)$ Solution

Chemical Equation:

$$
\begin{aligned}
\mathrm{CaCO}_{3} & \rightarrow \mathrm{CaO}+\mathrm{CO}_{2} \\
\mathrm{MgCO}_{3} & \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}
\end{aligned}
$$

Basis: 100 lb of limestone

Limestone			Solid Products		
Component	lb $=$ percent	lb mol	Compound	lb mol	lb
CaCO_{3}	92.89	0.9280	CaO	0.9280	52.04
MgCO_{3}	5.41	0.0642	MgO	0.0642	2.59
Inert	1.70		Inert	$\overline{0.9920}$	$\underline{1.70}$
Total	100.00	$\overline{0.9920}$	Total	$\overline{0.33}$	

The quantities listed under Products are calculated from the chemical equations. For example, for the last column:

$$
\begin{aligned}
& \underline{92.89 \mathrm{lb} \mathrm{CaCO}_{3}} \left\lvert\, \frac{1 \mathrm{lb} \mathrm{~mol} \mathrm{CaCO}}{3}\right. \\
& 100.1 \mathrm{lb} \mathrm{CaCO} \\
& 3
\end{aligned}\left|\frac{1 \mathrm{lb} \mathrm{~mol} \mathrm{CaO}}{1 \mathrm{lb} \mathrm{~mol} \mathrm{CaCO}} 3\right| \frac{56.08 \mathrm{lb} \mathrm{CaO}}{1 \mathrm{lb} \mathrm{~mol} \mathrm{CaO}}=52.04 \mathrm{lb} \mathrm{CaO} \mathrm{C}
$$

The production of CO_{2} is:
0.9280 lb mol CaO is equivalent to $0.9280 \mathrm{lb} \mathrm{mol} \mathrm{CO}_{2}$
0.0642 lb mol MgO is equivalent to $0.0642 \mathrm{lb} \mathrm{mol} \mathrm{CO}_{2}$

Total $\mathrm{lb} \mathrm{mol} \mathrm{CO} 2=0.9280+0.0642=0.992 \mathrm{lb} \mathrm{mol} \mathrm{CO} 2$

$$
\underline{0.992 \mathrm{lb} \mathrm{~mol} \mathrm{CO}_{2}} \left\lvert\, \frac{44.0 \mathrm{lb} \mathrm{CO}_{2}}{1 \mathrm{lb} \mathrm{~mol} \mathrm{CO}} 2 \mathrm{Cl}\right.
$$

Alternately, you could have calculated the $\mathrm{lb} \mathrm{CO}_{2}$ from a total balance: $100-56.33=44.67$.
Now, to calculate the quantities originally asked for:
(a) CaO produced $=$

$$
\frac{52.04 \mathrm{lb} \mathrm{CaO}}{100 \mathrm{lb} \text { limestone }} \left\lvert\, \frac{2000 \mathrm{lb}}{1 \text { ton }}=1041 \mathrm{lb} \mathrm{CaO} / \mathrm{ton}\right.
$$

(b) CO_{2} recovered $=\frac{43.65 \mathrm{lb} \mathrm{CO}_{2}}{100 \mathrm{lb} \text { limestone }}=0.437 \mathrm{lb} \mathrm{CO}_{2} / \mathrm{lb}$ limestone
(c) Limestone required $=$

$$
\frac{100 \mathrm{lb} \text { limestone }}{56.33 \mathrm{lb} \text { lime }} \left\lvert\, \frac{2000 \mathrm{lb}}{1 \mathrm{ton}}=\begin{aligned}
& 3550 \mathrm{lb} \text { limestone/ } \\
& \text { ton lime }
\end{aligned}\right.
$$

Terminology for Applications of Stoichiometry
Extent of Reaction
The extent of reaction, ξ, is based on a particular stoichiometric equation, and denotes how much reaction occurs.
The extent of reaction is defined as follows:
Where:

$$
\xi=\frac{n_{i}-n_{i o}}{v_{i}}
$$

$\mathrm{n}_{\mathrm{i}}=$ moles of species i present in the system after the reaction occurs n_{io}
$=$ moles of species i present in the system when the reaction starts
$v_{i}=$ coefficient for species i in the particular chemical reaction equation (moles of species i produced or consumed per moles reacting) $\xi=$ extent of reaction (moles reacting)

- The coefficients of the products in a chemical reaction are assigned positive values and the reactants assigned negative values. Note that $\left(n_{i}-n_{i o}\right)$ is equal to the generation or consumption of component i by reaction.

Equation (9.1) can be rearranged to calculate the number of moles of component i from the value of the extent of reaction

$$
n_{i}=n_{i 0}+\xi v_{i}
$$

Example 18

Determine the extent of reaction for the following chemical reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ given the following analysis of feed and product:

	N_{2}	H_{2}	NH_{3}
Feed	100 g	50 g	5 g
Product			90 g

Also, determine the g and g mol of N_{2} and H_{2} in the product.

Solution

The extent of reaction can be calculated by applying Equation 9.1 based on NH_{3} :
Dr.Ali H.Abbar

$$
\begin{aligned}
& n_{i}=\frac{90 \mathrm{~g} \mathrm{NH}_{3}}{\left\lvert\, \frac{1 \mathrm{~g} \mathrm{~mol} \mathrm{NH}}{3}\right.}=5.294 \mathrm{~g} \mathrm{~mol} \mathrm{NH}_{3} \\
& n_{i 0}=\frac{5 \mathrm{~g} \mathrm{NH}_{3}}{} \left\lvert\, \frac{1 \mathrm{~g} \text { mole } \mathrm{NH}_{3}}{17 \mathrm{~g} \mathrm{NH}_{3}}=0.294 \mathrm{~g} \mathrm{~mol} \mathrm{NH} 3\right. \\
& \xi=\frac{n_{i}-n_{i 0}}{v_{i}}=\frac{(5.294-0.204) \mathrm{g} \mathrm{~mol} \mathrm{NH}_{3}}{2 \mathrm{~g} \mathrm{~mol} \mathrm{NH}} 3 / \text { moles reacting } \quad 2.50 \text { moles reacting }
\end{aligned}
$$

Equation 9.2 can be used to determine the g mol of N_{2} and H_{2} in the products of the reaction

$$
\begin{aligned}
& \mathrm{N}_{2}: \quad n_{i 0}=\frac{100 \mathrm{~g} \mathrm{~N}_{2}}{} \left\lvert\, \frac{1 \mathrm{~g} \mathrm{~mol} \mathrm{~N}}{2}\right. \\
& 28 \mathrm{~g} \mathrm{~N}_{2}
\end{aligned}=3.57 \mathrm{~g} \mathrm{~mol} \mathrm{~N}_{2} .
$$

Note: If several independent reactions occur in the reactor, say k of them, ξ can be defined for each reaction, with v_{ki} being the stoichiometric coefficient of species i in the kth reaction, the total number of moles of species i is

$$
n_{i}=n_{i 0}+\sum_{k=1}^{R} v_{k i} \xi_{k}
$$

Where R is the total number of independent reactions.

Limiting and Excess Reactants

${ }^{\mathrm{TM}}$ The excess material comes out together with, or perhaps separately from, the product, and sometimes can be used
again.
${ }^{\mathrm{TM}}$ The limiting reactant is the species in a chemical reaction that would theoretically run out first (would be completely consumed) if the reaction were to proceed to completion according to the chemical equation- even if the reaction does not proceed to completion! All the other reactants are called excess reactants.
\square amount of the excess reactant fed- amount of theexcess reactant required to
\% excess reactant $=\square$ \qquad react with the limiting reactant
\{amount of the excess reactant requiredto react with the limiting reactant \}

тм
For example, using the chemical reaction equation in Example 9.2,

$$
\mathrm{C}_{7} \mathrm{H}_{16}+11 \mathrm{O}_{2} \rightarrow 7 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

If 1 g mol of $\mathrm{C}_{7} \mathrm{H}_{16}$ and 12 g mol of O_{2} are mixed.
Chemical Engineering Principles-I
Dr.Ali H.Abbar

As a straightforward way of determining the limiting reactant, you can determine the maximum extent of reaction, $\xi^{\max }$, for each reactant based on the complete reaction of the reactant. The reactant with the smallest maximum extent of reaction is the limiting reactant. For the example, for 1 g mol of $\mathrm{C}_{7} \mathrm{H}_{16}$ plus 12 g mole of O_{2}, you calculate

$$
\begin{aligned}
& \xi^{\max }\left(\text { based on } \mathrm{O}_{2}\right)=\frac{0 \mathrm{~g} \mathrm{~mol} \mathrm{O}}{2}-12 \mathrm{~g} \mathrm{~mol} \mathrm{O} \\
& -11 \mathrm{~g} \mathrm{~mol} \mathrm{O}_{2} / \text { moles reacting }
\end{aligned}=1.09 \text { moles reacting } \quad \begin{aligned}
& \xi^{\max }\left(\text { based on } \mathrm{C}_{7} \mathrm{H}_{16}\right)=\frac{0 \mathrm{~g} \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{16}-1 \mathrm{~g} \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{16}}{-1 \mathrm{~g} \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{16} / \text { moles reacting }}=1.00 \text { moles reacting }
\end{aligned}
$$

Therefore, heptane is the limiting reactant and oxygen is the excess reactant.

As an alternate to determining the limiting reactant,

$$
\frac{\mathrm{O}_{2}}{\mathrm{C}_{7} \mathrm{H}_{16}}: \quad \frac{\text { Ratio in feed }}{12}=12 \quad>\quad \frac{\text { Ratio in chemical equation }}{1}=11
$$

${ }^{\mathrm{TM}}$ Consider the following reaction

$$
\mathrm{A}+3 \mathrm{~B}+2 \mathrm{C} \rightarrow \text { Products }
$$

If the feed to the reactor contains 1.1 moles of $\mathrm{A}, 3.2$ moles of B , and 2.4 moles of C . The extents of reaction based on complete reaction of A, B, and C are

$$
\begin{aligned}
& \xi^{\max }(\text { based on } \mathrm{A})=\frac{-1.1 \mathrm{~mol} \mathrm{~A}}{-1}=1.1 \\
& \xi^{\max }(\text { based on } \mathrm{B})=\frac{-3.2 \mathrm{~mol} \mathrm{~B}}{-3}=1.07 \\
& \xi^{\max }(\text { based on } \mathrm{C})=\frac{-2.4 \mathrm{~mol} \mathrm{C}}{-2}=1.2
\end{aligned}
$$

As a result, B is identified as the limiting reactant in this example while A and C are the excess reactants.
As an alternate to determining the limiting reactant for same example:
We choose A as the reference substance and calculate

$$
\begin{array}{ccc}
& \frac{\text { Ratio in feed }}{3.2} & < \\
\frac{\mathrm{B}}{\mathrm{~A}}: & \frac{\text { Ratio in chemical equation }}{1.1}=2.91 \\
\frac{\mathrm{C}}{\mathrm{~A}}: & \frac{2.4}{1.1}=2.18 & >
\end{array}
$$

We conclude that B is the limiting reactant relative to A, and that A is the limiting reactant relative to C, hence B is the limiting reactant among the set of three reactant. In symbols we have $\mathrm{B}<\mathrm{A}, \mathrm{C}>\mathrm{A}$ (i.e., $\mathrm{A}<\mathrm{C}$), so that $\mathrm{B}<\mathrm{A}<\mathrm{C}$.

Example 19

If you feed 10 grams of N_{2} gas and 10 grams of H_{2} gas into a reactor:
a. What is the maximum number of grams of NH_{3} that can be produced?
b. What is the limiting reactant?
c. What is the excess reactant?

Dr.Ali H.Abbar

Solution

	$\mathrm{NH}_{3}(\mathrm{~g})$				
	4				
	$\begin{aligned} & \mathrm{N}_{2}(\mathrm{~g}) \\ & 10 \mathrm{~g} \end{aligned} \longrightarrow$		React	$\longleftarrow \quad \begin{aligned} & \mathrm{H}_{2}(\mathrm{~g}) \\ & 10 \mathrm{~g} \end{aligned}$	
	$\mathrm{N}_{2}(\mathrm{~g})$	+	$3 \mathrm{H}_{2}(\mathrm{~g})$	\rightarrow	$2 \mathrm{NH}_{3}(\mathrm{~g})$
Given g:	10	10		0	
MW:	28	2.016		17.02	
Calculated g mol:	0.357	4.960		0	

$$
\begin{aligned}
& \xi^{\max }\left(\text { based on } \mathrm{N}_{2}\right)=\frac{-0.357 \mathrm{~g} \mathrm{~mol} \mathrm{~N}_{2}}{-1 \mathrm{~g} \mathrm{~mol} \mathrm{~N}_{2} / \text { moles reacting }=0.357 \text { moles reacting }} \\
& \xi^{\max \left(\text { based on } \mathrm{H}_{2}\right)}=\frac{-4.960 \mathrm{~g} \mathrm{~mol} \mathrm{H}_{2}}{-3 \mathrm{~g} \mathrm{~mol} \mathrm{H}} / 2 \text { moles reacting }
\end{aligned}=1.65 \text { holes reacting }
$$

(b) N_{2} is the limiting reactant, and that (c) H_{2} is the excess reactant.

The excess $\mathrm{H}_{2}=4.960-3(0.357)=3.89 \mathrm{~g}$ mol. To answer question (a), the maximum amount of NH_{3} that can be produced is based on assuming complete conversion of the limiting reactant

$$
\underline{0.357 \mathrm{~g} \mathrm{~mol} \mathrm{~N}_{2}} \left\lvert\, \frac{2 \mathrm{~g} \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{~g} \mathrm{~mol} \mathrm{~N}} 2 \mathrm{l}\right.
$$

Conversion and degree of completion
: Conversion is the fraction of the feed or some key material in the feed that is converted into products.
: Conversion is related to the degree of completion of a reaction namely the percentage or fraction of the limiting reactant converted into products. Thus, percent conversion is
moles (or mass) of feed (or a compound in the feed) that react
\% conversion= \qquad $\times 100$
moles (or mass) of feed (or a component in the feed) introduced

For example, for the reaction equation described in Example 16, if 14.4 kg of CO_{2} are formed in the reaction of 10 kg of $\mathrm{C}_{7} \mathrm{H}_{16}$, you can calculate what percent of the $\mathrm{C}_{7} \mathrm{H}_{16}$ is converted to CO_{2} (reacts) as follows:

$$
\begin{aligned}
& \mathrm{C}_{7} \mathrm{H}_{16}+11 \mathrm{O}_{2} \rightarrow 7 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O} \\
& \underline{14.4 \mathrm{~kg} \mathrm{CO}_{2}}\left|\frac{1 \mathrm{~kg} \mathrm{~mol} \mathrm{CO}}{2}\right| \\
& \frac{10 \mathrm{~kg} \mathrm{C}_{7} \mathrm{H}_{16}}{} \left\lvert\, \frac{1 \mathrm{~kg} \mathrm{~mol} \mathrm{C}}{7} \mathrm{H}_{16} \mathrm{~kg} \mathrm{C}_{7} \mathrm{H}_{16} \quad=0.0999 \mathrm{~kg} \mathrm{~mol} \mathrm{C} \mathrm{C}_{7} \mathrm{H}_{16}\right.
\end{aligned}
$$

$\mathrm{C}_{7} \mathrm{H}_{16}$ equivalent to CO_{2} in the product
$\mathrm{C}_{7} \mathrm{H}_{16}$ in the reactants

$$
\% \text { conversion }=\frac{0.0468 \mathrm{~mol} \text { reacted }}{0.0999 \mathrm{~kg} \mathrm{~mol} \mathrm{fed}} 100=46.8 \% \text { of the } \mathrm{C}_{7} \mathrm{H}_{16}
$$

Chemical Engineering Principles-I

Dr.Ali H.Abbar

The conversion can also be calculated using the extent of reaction as follows:
Conversion is equal to the extent of reaction based on CO_{2} formation (i.e., the actual extent of reaction) divided by the extent of reaction assuming complete reaction of $\mathrm{C}_{7} \mathrm{H}_{16}$ (i.e., the maximum possible extent of reaction).

extent of reaction that actually occurs

Conversion=

extent of reaction that would occur if complete reaction took place

$$
=\frac{\xi}{\xi^{\max }}
$$

Selectivity

Selectivity is the ratio of the moles of a particular (usually the desired) product produced to the moles of another (usually undesired or by-product) product produced in a set of reactions.

For example, methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ can be converted into ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ or propylene $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$ by the reactions

$$
\begin{aligned}
& 2 \mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\
& 3 \mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

What is the selectivity of $\mathrm{C}_{2} \mathrm{H}_{4}$ relative to the $\mathrm{C}_{3} \mathrm{H}_{6}$ at 80% conversion of the $\mathrm{CH}_{3} \mathrm{OH}$? At 80% conversion: $\mathrm{C}_{2} \mathrm{H}_{4} 19$ mole $\%$ and for $\mathrm{C}_{3} \mathrm{H}_{6} 8$ mole $\%$. Because the basis for both values is the same, the selectivity $=19 / 8=2.4 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4}$ per mol $\mathrm{C}_{3} \mathrm{H}_{6}$. Yield

No universally agreed-upon definitions exist for yield-in fact, quite the contrary. Here are three common ones:

- Yield (based on feed) - the amount (mass or moles) of desired product obtained divided by the amount of the key (frequently the limiting) reactant fed.
- Yield (based on reactant consumed) - the amount (mass or moles) of desired product obtained divided by amount of the key (frequently the limiting) reactant consumed.
- Yield (based on theoretical consumption of the limiting reactant) - the amount (mass or moles) of a product obtained divided by the theoretical (expected) amount of the product that would be obtained based on the limiting reactant in the chemical reaction equation if it were completely consumed.

Example 20

The following overall reaction to produce biomass, glycerol, and ethanol

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\text { glucose })+0.118 \mathrm{NH}_{3} \rightarrow 0.59 \mathrm{CH}_{1.74} \mathrm{~N}_{0.2} \mathrm{O}_{0.45} \text { (biomass) } \\
&+0.43 \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}(\text { glycerol })+1.54 \mathrm{CO}_{2}+1.3 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \text { (ethanol) }+0.03 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Calculate the theoretical yield of biomass in g of biomass per g of glucose. Also, calculate the yield of ethanol in g of ethanol per g of glucose.

Solution

Basis: 0.59 g mol of biomass

Dr.Ali H.Abbar

$$
\begin{aligned}
& \frac{0.59 \mathrm{~g} \text { mol biomass }}{1 \mathrm{~g} \text { mol glucose }}\left|\frac{23.74 \mathrm{~g} \text { biomass }}{1 \mathrm{~g} \text { mol biomass }}\right| \frac{1 \mathrm{~g} \text { mol glucose }}{180 \mathrm{~g} \text { glucose }}=0.0778 \mathrm{~g} \text { biomass } / \mathrm{g} \text { glucose } \\
& \frac{1.3 \mathrm{~g} \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}{1 \mathrm{~g} \mathrm{~mol} \text { glucose }}\left|\frac{46 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}{1 \mathrm{~g} \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}\right| \frac{1 \mathrm{~g} \text { mol glucose }}{180 \mathrm{~g} \text { glucose }}=0.332 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{g} \text { glucose }
\end{aligned}
$$

Example 21

For this example, large amounts of single wall carbon nanotubes can be produced by the catalytic decomposition of ethane over Co and Fe catalysts supported on silica

$$
\begin{array}{cc}
\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow 2 \mathrm{C}+3 \mathrm{H}_{2} & \text { (a) } \\
\searrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} & \text { (b) } \tag{b}
\end{array}
$$

If you collect 3 g mol of H_{2} and 0.50 g mol of $\mathrm{C}_{2} \mathrm{H}_{4}$, what is the selectivity of C relative to $\mathrm{C}_{2} \mathrm{H}_{4}$?
Solution

$$
\begin{aligned}
\text { Basis: } & 3 \mathrm{~g} \mathrm{~mol} \mathrm{H}_{2} \text { by Reaction (a) } \\
& 0.50 \mathrm{~g} \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4} \text { by Reaction (b) }
\end{aligned}
$$

The 0.5 g mol of $\mathrm{C}_{2} \mathrm{H}_{4}$ corresponds to 0.50 g mol of H_{2} produced in Reaction (b).
The H_{2} produced by Reaction (a) $=3-0.50=2.5 \mathrm{~g} \mathrm{~mol}$.

The nanotubes (the C) produced by Reaction $(\mathrm{a})=(2 / 3)(2.5)=1.67 \mathrm{~g} \mathrm{~mol} \mathrm{C}$
The selectivity $=1.67 / 0.50=3.33 \mathrm{~g} \mathrm{~mol} \mathrm{C} / \mathrm{g} \mathrm{mol} \mathrm{C} 2 \mathrm{H}_{4}$
Example 22
The two reactions of interest for this example are

$$
\begin{align*}
& \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g}) \tag{a}\\
& \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}(\mathrm{~g}) \tag{b}
\end{align*}
$$

$\mathrm{C}_{3} \mathrm{H}_{6}$ is propylene (propene) $(\mathrm{MW}=42.08)$
$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{C} 1$ is allyl chloride (3-chloropropene) $(\mathrm{MW}=76.53)$
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}$ is propylene chloride (1,2-dichloropropane) $(\mathrm{MW}=112.99)$
The species recovered after the reaction takes place for some time are listed in Table E9.8.

species	Cl_{2}	$\mathrm{C}_{3} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{C} 1$	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}$	HCl
g mol	141	651	4.6	24.5	4.6

Based on the product distribution assuming that no allyl chlorides were present in the feed, calculate the following:
a. How much Cl_{2} and $\mathrm{C}_{3} \mathrm{H}_{6}$ were fed to the reactor in g mol ?
b. What was the limiting reactant?
c. What was the excess reactant?
d. What was the fraction conversion of $\mathrm{C}_{3} \mathrm{H}_{6}$ to $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{C} 1$?
e. What was the selectivity of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{C} 1$ relative to $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}$?
f. What was the yield of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{C} 1$ expressed in g of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{C} 1$ to the g of $\mathrm{C}_{3} \mathrm{H}_{6}$ fed to the reactor?
g. What was the extent of reaction of the first and second reactions?

Solution

Figure E9.8 illustrates the process as an open-flow system. A batch process could alternatively be used. Chemical Engineering Principles-I

Dr.Ali H.Abbar

Figure E9.8
A convenient basis is what is given in the product list in Table E9.8. Reaction
(a)

$$
\underline{4.6 \mathrm{~g} \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}} \left\lvert\, \frac{1 \mathrm{~g} \mathrm{~mol} \mathrm{Cl}_{2}}{1 \mathrm{~g} \mathrm{~mol} \mathrm{C}}{ }_{3} \mathrm{H}_{5} \mathrm{Cl} ~=4.6 \mathrm{~g} \mathrm{~mol} \mathrm{Cl}_{2}\right. \text { reacts }
$$

Reaction (b)

$$
\underline{24.5 \mathrm{~g} \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}} \left\lvert\, \frac{1 \mathrm{~g} \mathrm{~mol} \mathrm{Cl}_{2}}{1 \mathrm{~g} \mathrm{~mol} \mathrm{C} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}}=24.5 \mathrm{~g} \mathrm{~mol} \mathrm{Cl}_{2}\right. \text { reacts }
$$

Total $=4.6+24.5=29.1 \mathrm{~g} \mathrm{~mol} \mathrm{Cl}_{2}$ reacts Cl_{2}
in product $=141.0$ from Table E9.8
(a) Total Cl_{2} fed $=141.0+29.1=170.1 \mathrm{~g} \mathrm{~mol} \mathrm{Cl}_{2}$

Total $\mathrm{C}_{3} \mathrm{H}_{6}$ fed $=651.0+29.1=680.1 \mathrm{~g} \mathrm{~mol}$ of $\mathrm{C}_{3} \mathrm{H}_{6}$
(b) and (c) Since both reactions involve the same value of the respective reaction stoichiometric coefficients, both reactions will have the same limiting and excess reactants

$$
\begin{aligned}
& \xi^{\max }\left(\text { based on } \mathrm{C}_{3} \mathrm{H}_{6}\right)=\frac{-680.1 \mathrm{~g} \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6}}{-1 \mathrm{~g} \mathrm{~mol} \mathrm{C} \mathrm{C}_{3} \mathrm{H}_{6} / \text { moles reacting }}=680.1 \text { moles reacting } \\
& \xi^{\max }\left(\text { based on } \mathrm{Cl}_{2}\right)=\frac{-170.1 \mathrm{~g} \text { mole } \mathrm{Cl}_{2}}{-1 \mathrm{~g} \mathrm{~mol} \mathrm{Cl}} / 2 \text { moles reacting }=170.1 \text { moles reacting }
\end{aligned}
$$

Thus, $\mathrm{C}_{3} \mathrm{H}_{6}$ was the excess reactant and Cl_{2} the limiting reactant.
(d) The fraction conversion of $\mathrm{C}_{3} \mathrm{H}_{6}$ to $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{C} 1$ was

$$
\frac{4.6 \mathrm{~g} \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6} \text { that reacted }}{680.1 \mathrm{~g} \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6} \text { fed }}=6.76 \times 10^{-3}
$$

(e) The selectivity was

$$
\frac{4.6 \mathrm{~g} \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}}{24.5 \mathrm{~g} \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}}=0.19 \frac{\mathrm{~g} \mathrm{~mol} \mathrm{C} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}}{\mathrm{~g} \mathrm{~mol} \mathrm{C}}{ }_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}
$$

(f) The yield was

$$
\frac{(76.53)(4.6) \mathrm{g} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}}{(42.08)(680.1) \mathrm{g} \mathrm{C}_{3} \mathrm{H}_{6}}=0.012 \frac{\mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}}{\mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}}
$$

(g) Because $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{C} 1$ is produced only by the first reaction, the extent of reaction of the first reaction is

$$
\xi_{1}=\frac{n_{i}-n_{i o}}{v_{i}}=\frac{4.6-0}{1}=4.6
$$

Because $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{C}_{12}$ is produced only by the second reaction, the extent of reaction of the second reaction is

$$
\xi_{2}=\frac{n_{i}-n_{i o}}{v_{i}}=\frac{24.5-0}{1}=24.5
$$

Example 23

Five pounds of bismuth ($\mathrm{MW}=209$) is heated along with one pound of sulfur $(\mathrm{MW}=32)$ to form $\mathrm{Bi}_{2} \mathrm{~S}_{3}(\mathrm{MW}=514)$. At the end of the reaction, the mass is extracted and the free sulfur recovered is 5% of the reaction mass. Determine $2 \mathrm{Bi}+3 \mathrm{~S} \longrightarrow \mathrm{Bi}_{2} \mathrm{~S}_{3}$

1. The limiting reactant.
2. The percent excess reactant.
3. The percent conversion of sulfur to $\mathrm{Bi}_{2} \mathrm{~S}_{3}$

Solution

a. Find the Limiting reactant

Ratio in the feed

$\frac{\mathrm{Bi}}{\mathrm{S}}=\frac{$| $5.00 \mathrm{lb} \mathrm{Bi} \left\lvert\, \begin{array}{l}1 \mathrm{lb} \mathrm{mol} \mathrm{Bi} \\ 209 \mathrm{lb} \mathrm{Bi}\end{array}\right.$ |
| :--- |
| 1.00 lb S |
| 1 lb mol S |}{$\begin{array}{l}32 \mathrm{lb} \mathrm{S}\end{array}$}\(\quad=\quad \begin{aligned} \& 0.0239 \mathrm{~mol} \mathrm{Bi}

\& 0.0313 \mathrm{~mol} \mathrm{~S}\end{aligned}=0.774\)
Ratio in the chemical equation $=\frac{2 \mathrm{lb} \mathrm{mol} \mathrm{Bi}}{31 \mathrm{~b} \mathrm{~mol} \mathrm{~S}} \quad=0.667$

Compare the two ratios; \mathbf{S} is the limiting reactant.

b. \% Excess reactant

$$
\begin{aligned}
& \text { Bi required } \left.=\frac{1 \mathrm{lb} \mathrm{~S}}{} \begin{array}{l}
1 \mathrm{lb} \mathrm{~mol} \mathrm{~S} \\
32 \mathrm{lb} \mathrm{~S}
\end{array} \right\rvert\, \begin{array}{c}
2 \mathrm{~mol} \mathrm{Bi} \\
\mathrm{~mol} \mathrm{~S}
\end{array}=0.0208 \mathrm{lb} \mathrm{~mol} \mathrm{Bi} \\
& \% \text { excess } \mathrm{Bi}=\frac{(0.0239-0.028)}{0.028} \times 100=\mathbf{1 4 . 9 \%}
\end{aligned}
$$

c. We will assume that no gaseous products are formed, so that the total mass of the reaction mixture is conserved at $6 \mathrm{lb}(5 \mathrm{lbBi}+1 \mathrm{lbS})$. The free sulfur at the end of the reaction $=$ 5%.

$$
\begin{array}{l|c|c}
6.00 \mathrm{lb} \mathrm{rxn} \mathrm{mass} & 5.00 \mathrm{lb} \mathrm{~S} & 1 \mathrm{lb} \mathrm{~mol} \mathrm{~S} \\
\hline & 100 \mathrm{lb} \mathrm{rxn} \mathrm{mass} & 32.0 \mathrm{lb} \mathrm{~S}
\end{array}=0.00938 \mathrm{lb} \mathrm{~mol} \mathrm{~S}
$$

$$
\begin{aligned}
\% \text { Conversion } & =\frac{\text { moles of feed that react }}{\text { moles of feed introduced }} \times 100 \\
& =\frac{0.0313-0.00938}{0.0313} \times 100=\mathbf{7 0 . 0} \%
\end{aligned}
$$

Questions

1. What is a limiting reactant?
2. What is an excess reactant?
3. How do you calculate the extent of reaction from experimental data?

Answers:

Q. 3 Reactant present in the least stoichiometric quantity.
Q. 4 All other reactants than the limiting reactant.
Q. 5 For a species in

$$
\xi=\frac{n_{\mathrm{out}, i}-n_{\mathrm{in}, i}}{v_{i}}
$$

Open system:
Chemical Engineering Principles-I

Closed system:

Dr.Ali H.Abbar

Problems

1. Write balanced reaction equations for the following reactions:
a. $\quad \mathrm{C}_{9} \mathrm{H}_{18}$ and oxygen to form carbon dioxide and water.
b. FeS_{2} and oxygen to form $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and sulfur dioxide.
2. If 1 kg of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ is oxidized with oxygen, how many kilograms of O_{2} are needed to convert all the benzene to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$?
3. The electrolytic manufacture of chlorine gas from a sodium chloride solution is carried out by the following reaction:

$$
2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}+\mathrm{Cl}_{2}
$$

How many kilograms of Cl_{2} can be produced from $10 \mathrm{~m}^{3}$ of brine solution containing 5% by weight of NaCl ? The specific gravity of the solution relative to that of water at $4^{\circ} \mathrm{C}$ is 1.07 .
4. Can you balance the following chemical reaction equation?

$$
\mathrm{a}_{1} \mathrm{NO}_{3}+\mathrm{a}_{2} \mathrm{HClO} \rightarrow \mathrm{a}_{3} \mathrm{HNO}_{3}+\mathrm{a}_{4} \mathrm{HCl}
$$

5. For the reaction in which stoichiometric quantities of the reactants are fed

$$
2 \mathrm{C}_{5} \mathrm{H}_{10}+15 \mathrm{O}_{2} \rightarrow 10 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O} \text { and the reaction goes to completion, }
$$ what is the maximum extent of reaction based on $\mathrm{C}_{5} \mathrm{H}_{10}$? On O_{2} ? Are the respective values different or the same? Explain the result.

6. Calcium oxide (CaO) is formed by decomposing limestone (pure CaCO_{3}). In one kiln the reaction goes to 70% completion.
a. What is the composition of the solid product withdrawn from the kiln?
b. What is the yield in terms of pounds of CO_{2} produced per pound of limestone fed into the process?
7. Aluminum sulfate can be made by reacting crushed bauxite ore with sulfuric acid, according to the following chemical equation:

$$
\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

The bauxite ore contains 55.4% by weight of aluminum oxide, the remainder being impurities. The sulfuric acid solution contains 77.7% pure sulfuric acid, the remainder being water. To produce crude aluminum sulfate containing 1798 lb of pure aluminum sulfate, 1080 lb of bauxite ore and 2510 lb of sulfuric acid solution are reacted.
a. Identify the excess reactant.
b. What percentage of the excess reactant was consumed?
c. What was the degree of completion of the reaction?
8. Two well-known gas phase reactions take place in the dehydration of ethane:

$$
\begin{align*}
\mathrm{C}_{2} \mathrm{H}_{6} & \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \tag{a}\\
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{H}_{2} & \rightarrow 2 \mathrm{CH}_{4} \tag{b}
\end{align*}
$$

Given the product distribution measured in the gas phase reaction of $\mathrm{C}_{2} \mathrm{H}_{6}$ as follows
$\mathrm{C}_{2} \mathrm{H}_{6} 27 \%, \quad \mathrm{C}_{2} \mathrm{H}_{4} 33 \%, \quad \mathrm{H}_{2} 13 \%$, and $\mathrm{CH}_{4} 27 \%$
a. What species was the limiting reactant?
b. What species was the excess reactant?
c. What was the conversion of $\mathrm{C}_{2} \mathrm{H}_{6}$ to CH_{4} ?
d. What was the degree of completion of the reaction?
e. What was the selectivity of $\mathrm{C}_{2} \mathrm{H}_{4}$ relative to CH_{4} ?
f. What was the yield of $\mathrm{C}_{2} \mathrm{H}_{4}$ expressed in kg mol of $\mathrm{C}_{2} \mathrm{H}_{4}$ produced per kg mol of $\mathrm{C}_{2} \mathrm{H}_{6}$?
g. What was the extent of reaction of $\mathrm{C}_{2} \mathrm{H}_{6}$?

Answers:

1. (a)

$$
\mathrm{C}_{9} \mathrm{H}_{18}+\frac{27}{2} \mathrm{O}_{2} \rightarrow 9 \mathrm{CO}_{2}+\underset{\text { (b) }}{9 \mathrm{H}_{2} \mathrm{O}}
$$

$4 \mathrm{FeS}_{2}+11 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{SO}_{2}$
2. 3.08
3. 323
4. No
5. (a) 1 ,
(b) 1 ,
(c) The same,
(d) The extent of reaction depends on the reaction equation as a whole and not on one species in the equation.
6. $\mathrm{CaCO}_{3}: 43.4 \%, \mathrm{CaO}: 56.4 \%$; (b) 0.308
7. (a) $\mathrm{H}_{2} \mathrm{SO}_{4}$ (b) 79.2%;
(c) 0.89
8. (a) $\mathrm{C}_{2} \mathrm{H}_{6}$ (the hydrogen is from reaction No.2, not the feed);
(b) None;
(c) Fraction conversion $=0.184$;
(d) 0.45 ;
(e) 1.22
(f) Based on reactant in the feed: 0.45 , based on reactant consumed: 0.84 , based on theory: 0.50 ;
(g) Reaction (a) is 33 mol reacting and reaction (b) is 13.5 mol reacting, both based on 100 mol product.

2.5 Material Balances for Processes Involving Reaction

Species Material Balances
Processes Involving a Single Reaction
The material balance for a species must be augmented to include generation and consumption terms when chemical reactions occur in a process.

Note that we have written Equation (1) in moles rather than mass because the generation and consumption terms are more conveniently represented in moles.

For example : Figure 10.1 presents the process as an open, steady-state system operating for 1 min so that the accumulation terms are zero. The data in Figure 10.1 are in g mol.

Using Equation 10.1 you can calculate via a value in g mol for the generation or consumption, as the case may be, for each of the three species involved in the reaction:

Figure 10.1. A reactor to produce NH_{3}.
NH_{3} (generation): $6-0=6 \mathrm{gmol}$
H_{2} (consumption): 9-18 =-9 gmol
N_{2} (consumption): $12-15=-3 \mathrm{gmol}$

Here is where the extent of reaction ξ becomes useful. Recall that for an open system

$$
\begin{equation*}
\xi=\frac{n_{i}^{\text {out }}-n_{i}^{\text {in }}}{v_{i}} \quad i=1, \cdots N \tag{10.2}
\end{equation*}
$$

Where v_{i} is the stoichiometric coefficient of species i in the reaction equation

$$
\begin{aligned}
& v_{\mathrm{NH}_{3}}=2 \\
& v_{\mathrm{H}_{2}}=-3 \\
& v_{\mathrm{N}_{2}}=-1
\end{aligned}
$$

And the extent of reaction can be calculated via any species:

$$
\begin{aligned}
& \xi=\frac{n_{\mathrm{NH}_{3}}^{\text {out }}-n_{\mathrm{NH}_{3}}^{\text {in }}}{v_{\mathrm{NH}_{3}}}=\frac{6-0}{2}=3 \\
& \xi=\frac{n_{\mathrm{H}_{2}}^{\text {out }}-n_{\mathrm{H}_{2}}^{\text {in }}}{v_{\mathrm{H}_{2}}}=\frac{9-18}{-3}=3 \\
& \xi=\frac{n_{\mathrm{N}_{2}}^{\text {out }}-n_{\mathrm{N}_{2}}^{\text {in }}}{v_{\mathrm{N}_{2}}}=\frac{12-15}{-1}=3
\end{aligned}
$$

The three species balances corresponding to the process in Figure 10.1 are

Component	Out $n_{i}^{\text {out }}$	In $-n_{i}^{i n}$	$=$	Generation or Consumption $v_{i} \xi$
NH_{3} :	6	-0	$=$	$2(3)=6$
H_{2} :	9	-18	$=$	$-3(3)=-9$
N_{2} :	12	-15	$=$	$-1(3)=-3$

The term $\mathrm{v}_{\mathrm{i}} \xi$ corresponds to the moles of i generated or consumed.
${ }^{\mathrm{TM}}$ The value of the fraction conversion f of the limiting reactant; ξ is related to f by

$$
\xi=\frac{(-f) n_{\text {limiting reactant }}^{\mathrm{in}}}{v_{\text {limiting reactant }}}
$$

Consequently, you can calculate the value of ξ from the fraction conversion (or vice versa) plus information identifying the limiting reactant.

Example 24

The chlorination of methane occurs by the following reaction

$$
\mathrm{CH}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}
$$

You are asked to determine the product composition if the conversion of the limiting reactant is 67%, and the feed composition in mole \% is given as: $40 \% \mathrm{CH}_{4}, 50 \% \mathrm{Cl}_{2}$, and $10 \% \mathrm{~N}_{2}$.

Solution

Assume the reactor is an open, steady-state process.
Reactor

Figure E10.1
Basis 100 g mol feed Limiting
reactant:

$$
\begin{aligned}
\xi^{\max }\left(\mathrm{CH}_{4}\right) & =\frac{-n_{\mathrm{CH}_{4}}^{\mathrm{in}}}{v_{\mathrm{CH}_{4}}}=\frac{-40}{(-1)}=40 \\
\xi^{\max }\left(\mathrm{Cl}_{2}\right) & =\frac{-n_{\mathrm{Cl}_{2}}^{\mathrm{i}}}{v_{\mathrm{Cl}_{2}}}=\frac{-50}{(-1)}=50
\end{aligned}
$$

Therefore, CH_{4} is the limiting reactant.
Calculate the extent of reaction using the specified conversion rate and Equation 10.3.

$$
\xi=\frac{-f n_{l r}^{\mathrm{in}}}{v_{l r}}=\frac{(-0.67)(40)}{-1}=26.8 \mathrm{~g} \text { moles reacting }
$$

The species material balances (in moles) using Equation 10.2 gives a direct solution for each species in the product:

$$
\begin{aligned}
& n_{\mathrm{CH}_{4}}^{\text {out }}=40-1(26.8)=13.2 \\
& n_{\mathrm{Cl}_{2}}^{\text {out }}=50-1(26.8)=23.2 \\
& n_{\mathrm{CH}_{3} \mathrm{Cl}}^{\text {out }}=0+1(26.8)=26.8 \\
& n_{\mathrm{HCl}}^{\text {out }}=0+1(26.8)=26.8 \\
& n_{\mathrm{N}_{2}}^{\text {out }}=10-0(26.8)=\underline{10.0} \\
& 100.0=P
\end{aligned}
$$

Therefore, the composition of the product stream is: $13.2 \% \mathrm{CH}_{4}, 23.2 \% \mathrm{Cl}_{2}, 26.8 \% \mathrm{CH}_{3} \mathrm{C} 1,26.8 \% \mathrm{HCl}$, and $10 \% \mathrm{~N}_{2}$ because the total number of product moles is conveniently 100 g mol.

Example 25

A proposed process to remove $\mathrm{H}_{2} \mathrm{~S}$ is by reaction with SO_{2} :

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

In a test of the process, a gas stream containing $20 \% \mathrm{H}_{2} \mathrm{~S}$ and $80 \% \mathrm{CH}_{4}$ were combined with a stream of pure SO_{2}. The process produced 5000 lb of $\mathrm{S}(\mathrm{s})$, and in the product gas the ratio of SO_{2} to $\mathrm{H}_{2} \mathrm{~S}$ was equal to 3 , and the ratio of $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{H}_{2} \mathrm{~S}$ was 10 . You are asked to determine the fractional conversion of the limiting reactant, and the feed rates of the $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} streams.

Solution

Figure E10.2
Basis is $5000 \mathrm{lb} \mathrm{S}(156.3 \mathrm{lb} \mathrm{mol} \mathrm{S})$

Basis: $\mathrm{S}=5000 \mathrm{lb}(156.3 \mathrm{lb} \mathrm{mol})$

$$
x_{\mathrm{H}_{2} \mathrm{~S}}^{F}=0.20 \text { or } x_{\mathrm{CH}_{4}}^{F}=0.80,\left(n_{\mathrm{SO}_{2}}^{P} / n_{\mathrm{H}_{2} \mathrm{~S}}^{P}\right)=3,\left(n_{\mathrm{H}_{2} \mathrm{O}}^{P} / n_{\mathrm{H}_{2} \mathrm{~S}}^{P}\right)=10
$$

Specifications: 4 (3 independent)

The species balances in pound moles after introduction of most of the specifications are:

$$
\begin{align*}
\mathrm{S}: & 156.3=0+3 \xi \tag{a}\\
\mathrm{H}_{2} \mathrm{~S}: & n_{\mathrm{H}_{2} \mathrm{~S}}^{P}=0.20 F-2 \xi \tag{b}\\
\mathrm{SO}_{2}: & n_{\mathrm{SO}_{2}}^{P}=F_{\mathrm{SO}_{2}}-1 \xi \tag{c}\\
\mathrm{H}_{2} \mathrm{O}: & n_{\mathrm{H}_{2} \mathrm{O}}^{P}=0+2 \xi \tag{d}\\
\mathrm{CH}_{4}: & n_{\mathrm{CH}_{4}}^{P}=0.80 F+0(\xi) \tag{e}
\end{align*}
$$

The remaining specifications are

$$
\begin{align*}
& n_{\mathrm{SO}_{2}}^{P}=3 n_{\mathrm{H}_{2} \mathrm{~S}}^{P} \tag{f}\\
& n_{\mathrm{H}_{2} \mathrm{O}}^{P}=10 n_{\mathrm{H}_{2} \mathrm{~S}}^{P} \tag{g}
\end{align*}
$$

If you solve the equations without using a computer, you should start by calculating ξ from Equation (a)

Then Equation

$$
\begin{gathered}
\xi=\frac{156.3 \mathrm{~mol}}{3}=52.1 \mathrm{~mol} \mathrm{rxn} \\
n_{\mathrm{H}_{2} \mathrm{O}}^{P}=2(52.1)=104.2 \mathrm{lb} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

(d) gives

$$
n_{\mathrm{H}_{2} \mathrm{~S}}^{P}=\frac{1}{10} n_{\mathrm{H}_{2} \mathrm{O}}^{P}=10.4 \mathrm{lb} \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{~S}
$$

Next, Equation (g) gives

And Equation (f) gives $\quad n_{\mathrm{SO}_{2}}^{P}=3(10.4)=31.2 \mathrm{lb} \mathrm{mol} \mathrm{SO}$

If you solve the rest of the equations in the order (b), (c), and (e), you find
$\mathrm{F}=573 \mathrm{lbmol}$

$$
F_{\mathrm{SO}_{2}}=83.3 \mathrm{lb} \mathrm{~mol}
$$

$$
n_{\mathrm{CH}_{4}}^{F}=458 \mathrm{lb} \mathrm{~mol}
$$

Finally, you can identify $\mathrm{H}_{2} \mathrm{~S}$ as the limiting reactant because the molar ratio of SO_{2} to $\mathrm{H}_{2} \mathrm{~S}$ in the product gas (3/1) is greater than the molar ratio in the chemical reaction equation $(2 / 1)$.

The fractional conversion from Equation 10.3 is the consumption of $\mathrm{H}_{2} \mathrm{~S}$ divided by the total feed of $\mathrm{H}_{2} \mathrm{~S}$

$$
f=\frac{-(-2) \xi}{0.2 F}=\frac{(2)(52.1)}{(0.2)(573)}=0.91
$$

Processes Involving Multiple Reactions

For open system, steady-state processes with multiple reactions, Equation 10.1 in moles becomes for component i

$$
n_{i}^{\text {out }}=n_{i}^{\text {in }}+\sum_{j=1}^{R} v_{i j} \xi_{j}
$$

Where:
v_{ij} is the stoichiometric coefficient of species i in reaction j in the minimal set.
ξ_{j} is the extent of reaction for the j th reaction in the minimal set.
R is the number of independent chemical reaction equations (the size of the minimal set).

An equation analogous to Equation 10.4 can be written for a closed, unsteady-state system. The total moles, N , exiting a reactor are

$$
N=\sum_{i=1}^{S} n_{i}^{\text {out }}=\sum_{i=1}^{S} n_{i}^{\text {in }}+\sum_{i=1}^{S} \sum_{j=1}^{R} v_{i j} \xi_{j}
$$

Where S is the number of species in the system.

Example 26

Formaldehyde $\left(\mathrm{CH}_{2} \mathrm{O}\right)$ is produced industrially by the catalytic oxidation of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ according to the following reaction:

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{OH}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

Unfortunately, under the conditions used to produce formaldehyde at a profitable rate, a significant portion of the formaldehyde reacts with oxygen to produce CO and $\mathrm{H}_{2} \mathrm{O}$, that is,

$$
\begin{equation*}
\mathrm{CH}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \tag{2}
\end{equation*}
$$

Assume that methanol and twice the stoichiometric amount of air needed for complete conversion of the $\mathrm{CH}_{3} \mathrm{OH}$ to the desired products $\left(\mathrm{CH}_{2} \mathrm{O}\right.$ and $\left.\mathrm{H}_{2} \mathrm{O}\right)$ are fed to the reactor. Also assume that 90% conversion of the methanol results, and
that a 75% yield of formaldehyde occurs based on the theoretical production of $\mathrm{CH}_{2} \mathrm{O}$ by Reaction 1. Determine the composition of the product gas leaving the reactor.

Solution

Figure El0.3 is a sketch of the process with y_{i} indicating the mole fraction of the respective components in P (a gas).

Figure E10.3
Basis: $1 \mathrm{gmol} F$ The
limiting reactant is $\mathrm{CH}_{3} \mathrm{OH}$.
Use the fraction conversion, Equation 10.3:

$$
\xi_{1}=\frac{-0.90}{-1}\left(1_{\text {pea }} \overline{\bar{c} c t i n g} 9 \mathrm{~g}\right. \text { Thies }
$$

yield is related to ξ_{i} as follows

$$
n_{\mathrm{CH}_{2} \mathrm{O}}^{\text {out } 1}=n_{\mathrm{CH}_{2} \mathrm{O}}^{\text {in. } 1}+1\left(\xi_{1}\right)=0+\xi_{1}=\xi_{1}
$$

By reaction 1:

$$
n_{\mathrm{CH}_{2} \mathrm{O}}^{\mathrm{out}, 2}=n_{\mathrm{CH}_{2} \mathrm{O}}^{\mathrm{in} \cdot 2}-1\left(\xi_{2}\right)=n_{\mathrm{CH}_{2} \mathrm{O}}^{\text {out. }}-\xi_{2}=\xi_{1}-\xi_{2}
$$

By reaction 2:

The yield is

$$
\frac{n_{\mathrm{CH}_{2} \mathrm{O}}^{\mathrm{out}, 2}}{F}=\frac{\xi_{1}-\xi_{2}}{1}=0.75
$$

$\xi_{2}=0.15 \mathrm{~g}$ moles reacting
The entering oxygen is twice the required oxygen based on Reaction 1, namely

$$
\begin{aligned}
n_{\mathrm{o}_{2}}^{A} & =2\left(\frac{1}{2} F\right)=2\left(\frac{1}{2}\right)(1.00)=1.00 \mathrm{~g} \mathrm{~mol} \\
A & =\frac{n_{\mathrm{O}_{2}}^{A}}{0.21}=\frac{1.00}{0.21}=4.76 \mathrm{~g} \mathrm{~mol} \\
n_{\mathrm{N}_{2}}^{A} & =4.76-1.00=3.76 \mathrm{~g} \mathrm{~mol}
\end{aligned}
$$

Implicit equation:

$$
\Sigma y_{i}^{P}=1
$$

Calculate P using Equation 10.5:

$$
\begin{aligned}
P & =\sum_{i=1}^{S} n_{i}^{i n}+\sum_{i=1}^{S} \sum_{j=1}^{R} v_{i_{j}} \xi_{j} \\
& =1+4.76+\sum_{i=1}^{6} \sum_{j=1}^{2} v_{i_{j}} \xi_{j} \\
& =5.76+[(-1)+(-1 / 2)+(1)+0+(1)+0] 0.9 \\
& +[0+(-1 / 2)+(-1)+0+(1)+(1)] 0.15=6.28 \mathrm{~g} \mathrm{~mol}
\end{aligned}
$$

The material balances:

$$
\begin{aligned}
& n_{\mathrm{CH}_{3} \mathrm{OH}}^{\mathrm{out}}=y_{\mathrm{CH}_{3} \mathrm{OH}}(6.28)=1-(0.9)+0=0.10 \\
& n_{\mathrm{O}_{2}}^{\text {out }}=y_{\mathrm{O}_{2}}(6.28)=1.0-(1 / 2)(0.9)-(1 / 2)(0.15)=0.475 \\
& n_{\mathrm{CH}_{2} \mathrm{O}}^{\mathrm{out}}=y_{\mathrm{CH}_{2} \mathrm{O}}(6.28)=0+1(0.9)-1(0.15)=0.75 \\
& n_{\mathrm{H}_{2} \mathrm{O}}^{\text {out }}=y_{\mathrm{H}_{2} \mathrm{O}}(6.28)=0+1(0.9)+1(0.15)=1.05 \\
& n_{\mathrm{CO}}^{\text {out }}=y_{\mathrm{CO}}(6.28)=0+0+1(0.15)=0.15 \\
& n_{\mathrm{N}_{2}}^{\text {out }}=y_{\mathrm{N}_{2}}(6.28)=3.76-0-0=3.76
\end{aligned}
$$

The six equations can be solved for the y_{i} :

$$
\begin{array}{rlrl}
y_{\mathrm{CH}_{3} \mathrm{OH}}=1.6 \%, & y_{\mathrm{O}_{2}}=7.6 \%, & y_{\mathrm{N}_{2}}=59.8 \%, \\
y_{\mathrm{CH}_{2} \mathrm{O}} & =11.9 \%, & y_{\mathrm{H}_{2} \mathrm{O}}=16.7 \%, & y_{\mathrm{CO}}=2.4 \%
\end{array}
$$

Example 27
A bioreactor is a vessel in which biological conversion is carried out involving enzymes, microorganisms, and/or animal and plant cells. In the anaerobic fermentation of grain, the yeast Saccharomyces cerevisiae digests glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ from plants to form the products ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ and propenoic acid $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ by the following overall reactions:

$$
\begin{array}{ll}
\text { Reaction 1: } & \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2} \\
\text { Reaction 2: } & \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CO}_{2} \mathrm{H}+2 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

In a batch process, a tank is charged with 4000 kg of a 12% solution of glucose in water. After fermentation, 120 kg of CO_{2} are produced and 90 kg of unreacted glucose remains in the broth. What are the weight (mass) percents of ethanol and propenoic acid in the broth at the end of the fermentation process? Assume that none of the glucose is assimilated into the bacteria.

Solution

An unsteady-state process in a closed system

$$
n_{l}^{\text {final }}=n_{i}^{\text {initial }}+\sum_{j=1}^{R} v_{i j} \xi_{j}
$$

Figure E10.4
Basis: 4000 kg F

$$
\begin{gathered}
n_{\mathrm{H}_{2} \mathrm{O}}^{\text {Initial }}=\frac{4000(0.88)}{18.02}=195.3 \\
n_{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}^{\text {Initial }}=\frac{4000(0.12)}{180.1}=2.665
\end{gathered}
$$

Specifications: 4 (3 independent)

$$
n_{\mathrm{H}_{2} \mathrm{O}}^{\text {Inial }}=195.3 \text { or } n_{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{H}_{2}}^{\text {Inita }}=2.665
$$

(one is independent, the sum is F in mol)

$$
n_{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}^{\text {Final }}=\frac{90}{180.1}=0.500 \quad n_{\mathrm{CO}_{2}}^{\text {Final }}=\frac{120}{44}=2.727 .
$$

The material balance equations, after introducing the known values for the variables, are:

$$
\begin{align*}
& \mathrm{H}_{2} \mathrm{O}: \quad n_{\mathrm{H}_{2} \mathrm{O}}^{\text {Final }}=195.3+(0) \xi_{1}+(2) \xi_{2} \tag{a}\\
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}: \quad 0.500=2.665+(-1) \xi_{1}+(-1) \xi_{2} \tag{b}\\
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}: \quad n_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}^{\text {Final }}=0+2 \xi_{1}+(0) \xi_{2} \tag{c}\\
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CO}_{2} \mathrm{H}: \quad n_{\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CO}_{2} \mathrm{H}}^{F i n a l}=0+(0) \xi_{1}+(2) \xi_{2} \tag{d}\\
& \mathrm{CO}_{2} 2.727=0+(2) \xi_{1}+(0) \xi_{2} \tag{e}
\end{align*}
$$

Solution of equations: (e) (b) simultaneously, and then solve, (a), (c), and (d) in order.
$\xi_{1}=1.364 \mathrm{~kg}$ moles reacting $\quad \xi_{2}=0.801 \mathrm{~kg}$ moles reacting

Species	Results kg kmol	Conversion to mass percent		
		MW	kg	Mass \%
$\mathrm{H}_{2} \mathrm{O}$	196.9	18.01	3546.1	88.7
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	2.728	46.05	125.6	3.1
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CO}_{2} \mathrm{H}$	1.602	72.03	115.4	2.9
CO_{2}	2.277	44.0	120.0	3.0
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	0.500	180.1	90.1	2.3
			$\overline{3997}$	$\overline{1.00}$

Note: The total mass of 3977 kg is close enough to 4000 kg of feed to validate the results of the calculations. Element Material Balances
${ }^{\}}$Elements in a process are conserved, and consequently you can apply Equation 10.1to the elements in a process.
\} Because elements are not generated or consumed, the generation and consumption terms in Equation 10.1 can be ignored.

For Example: Carbon dioxide is absorbed in water in the process shown in Figure 10.2. The reaction is

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(\ell)
$$

Chemical Engineering Principles-I
Dr.Ali H.Abbar

Three unknowns exist: W, F, and P, and the process involves three element C, H, and O . It would appear that you can use the three element balances (in moles) [Basis $\mathrm{P}=100 \mathrm{~mol}$]

C: $\quad W(0)+F(1)=0.05 P(1)$
$\mathrm{H}: \quad W(2)+F(0)=[0.05(2)+0.95(2)] P=2 P$
O: $W(1)+F(2)=[0.05(3)+0.95(1)] P=1.10 P$

Figure 10.2 Schematic of the CO_{2}
absorber.

Example 28

Solution of Examples 24 and 26 Using Element Balances: All of the given data for this example is the same as in Examples 24 and 25

Solution

1. Example 24

The element material balances are:

$$
\begin{array}{ll}
\mathrm{C}: & 100(0.40) \\
\mathrm{H}: & 100(0.40)(4) \\
& =n_{\mathrm{CH}_{4}}^{\text {out }}(1)+n_{\mathrm{CH}_{4}}^{\text {out }}(4)+n_{\mathrm{CHI}}^{\mathrm{out}}(1) \\
\mathrm{Cl}: & 100(0.50)(2)=n_{\mathrm{Cl}_{2}}^{\text {out }}(2)+n_{\mathrm{HCl}}^{\text {out }}(1)+n_{\mathrm{CH}_{3} \mathrm{Cl}}^{\mathrm{out}}(3) \\
2 \mathrm{out}: & 100(0.10)(1)=n_{\mathrm{N}_{2}}^{\text {out }}(1)
\end{array}
$$

The solution of the problem will be the same as found in Example 10.1.
2. Example 25

The element balances are:
C: $\quad 1(1)+4.76(0)=P\left[y_{\mathrm{CH}_{3} \mathrm{OH}}^{P}(1)+y_{\mathrm{CH}_{2} \mathrm{O}}^{P}(1)+y_{\mathrm{CO}}^{P}(1)\right]$
$\mathrm{H}: \quad 1(4)+4.76(0)=P\left[y_{\mathrm{CH}_{3} \mathrm{OH}}^{P}(4)+y_{\mathrm{CH}_{2} \mathrm{O}}^{P}(2)+y_{\mathrm{H}_{2} \mathrm{O}}^{P}(2)\right]$
$\mathrm{O}: \quad 1(1)+1.00=P\left[y_{\mathrm{CH}_{3} \mathrm{OH}}^{P}(1)+y_{\mathrm{O}_{2}}^{P}(2)+y_{\mathrm{CH}_{2} \mathrm{O}}^{P}(1)\right.$ $\left.+y_{\mathrm{H}_{2} \mathrm{O}}^{P}(1)+y_{\mathrm{CO}}^{P}(1)\right]$
$2 \mathrm{~N}: 1(0)+3.76=P\left[y_{\mathrm{N}_{2}}^{P}(1)\right]$

The solution of the problem will not change.

$$
y_{i}^{P} P=n_{i}^{P}
$$

Note: It would be easier to use the term
in the equations above in place of the product of two variables,
and $\mathrm{P} . \quad y_{i}^{P}$
${ }^{\mathrm{n}}$ Element balances are especially useful when you do not know what reactions occur in a process. You only know information about the input and output stream components.

Example 29

In one such experiment for the hydrocracking (cracking reactions) of octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$, the cracked products had the following composition in mole percent: $19.5 \% \mathrm{C}_{3} \mathrm{H}_{8}, 59.4 \% \mathrm{C}_{4} \mathrm{H}_{10}$, and $21.1 \% \mathrm{C}_{5} \mathrm{H}_{12}$. You are asked to determine the molar ratio of hydrogen consumed to octane reacted for this process. Solution

Figure E10.6
Basis: $\mathrm{P}=100 \mathrm{~g} \mathrm{~mol}$
Element balances: 2 H, C The element balances:
C: $\mathrm{F}(8)+\mathrm{G}(0)=100[(0.195)(3)+(0.594)(4)+(0.211)(5)]$
H: $\mathrm{F}(18)+\mathrm{G}(2)=100[(0.195)(8)+(0.594)(10)+(0.211)(12)]$
And the solution is $\mathrm{F}=50.2 \mathrm{~g} \mathrm{~mol} \quad \mathrm{G}=49.8 \mathrm{~g} \mathrm{~mol}$

The ratio

$$
\frac{\mathrm{H}_{2} \text { consumed }}{\mathrm{C}_{8} \mathrm{H}_{18} \text { reacted }}=\frac{49.8 \mathrm{~g} \mathrm{~mol}}{50.2 \mathrm{~g} \mathrm{~mol}}=0.992
$$

Material Balances Involving Combustion
${ }^{\text {a }}$ Combustion is the reaction of a substance with oxygen with the associated release of energy and generation of product gases such as $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{CO}$, and SO_{2}.
${ }^{\mathrm{a}}$ Most combustion processes use air as the source of oxygen. For our purposes you can assume that air contains $79 \% \mathrm{~N}_{2}$ and $21 \% \mathrm{O}_{2}$.

Special terms:

1. Flue or stack gas: All the gases resulting from combustion process including the water vapor, sometimes known as a wet basis.
2. Orsat analysis or dry basis: All the gases resulting from combustion process not including the water vapor. Orsat analysis refers to a type of gas analysis apparatus in which the volumes of the respective gases are measured over and in equilibrium with water; hence each component is saturated with water vapor. The net result of the analysis is to eliminate water as a component being measured (show Figure 10.4).
3. Complete combustion: the complete reaction of the hydrocarbon fuel producing $\mathrm{CO}_{2}, \mathrm{SO}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$.
4. Partial combustion: the combustion of the fuel producing at least some CO . Because CO itself can react with oxygen, the production of CO in a combustion process does not produce as much energy as it would if only CO_{2} were produced.
5. Theoretical air (or theoretical oxygen): The minimum amount of air (or oxygen) required to be brought into the process for complete combustion. Sometimes this quantity is called the required air (or oxygen).
6. Excess air (or excess oxygen): In line with the definition of excess reactant given in Chapter 9, excess air (or oxygen) would be the amount of air (or oxygen) in excess of that required for complete combustion as defined in (5).

Figure 10.4 Comparison of a gas analysis on different bases.

Note: The calculated amount of excess air does not depend on how much material is actually burned but what is possible to be burned. Even if only partial combustion takes place, as, for example, C burning to both CO and CO_{2}, the excess air (or oxygen) is computed as if the process of combustion went to completion and produced only CO_{2}.

The percent excess air is identical to the percent excess O_{2} :

Note that the ratio $1 / 0.21$ of air to O_{2} cancels out in Equation 10.6. Percent excess air may also be computed as

$-\mathrm{O}^{2}$ enteringprocess $-\mathrm{O}^{2}$ required $\times 100$

\% excess air=

O_{2} required

Or
\% excess air=

$$
\frac{\text { excess } \mathrm{O}^{2}}{\mathrm{O}_{2} \text { entering-excess } \mathrm{O}_{2}} \times 100
$$

Example 30

Fuels other than gasoline are being eyed for motor vehicles because they generate lower levels of pollutants than does gasoline. Compressed propane is one such proposed fuel. Suppose that in a test 20 kg of $\mathrm{C}_{3} \mathrm{H}_{8}$ is burned with 400 kg of air to produce 44 kg of CO_{2} and 12 kg of CO . What was the percent excess air?

Solution

This is a problem involving the following reaction

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Basis: 20 kg of $\mathrm{C}_{3} \mathrm{H}_{8}$
${ }^{n}$ Since the percentage of excess air is based on the complete combustion of $\mathrm{C}_{3} \mathrm{H}_{8}$ to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$, the fact that combustion is not complete has no influence on the calculation of "excess air."

The required O_{2} is

$$
\underline{20 \mathrm{~kg} \mathrm{C}_{3} \mathrm{H}_{8}}\left|\frac{1 \mathrm{~kg} \mathrm{~mol} \mathrm{C}}{3} \mathrm{H}_{8}\right| \frac{5 \mathrm{~kg} \mathrm{~mol} \mathrm{O}}{2} \text { } 44.09 \mathrm{~kg} \mathrm{C}_{3} \mathrm{H}_{8} \left\lvert\, \frac{1 \mathrm{~kg} \mathrm{~mol} \mathrm{C} \mathrm{C}_{3} \mathrm{H}_{8}}{1.27 \mathrm{~kg} \mathrm{~mol} \mathrm{O}_{2}}\right.
$$

The entering O_{2} is

$$
\underline{400 \mathrm{~kg} \text { air }}\left|\frac{1 \mathrm{~kg} \mathrm{~mol} \text { air }}{29 \mathrm{~kg} \text { air }}\right| \frac{21 \mathrm{~kg} \mathrm{~mol} \mathrm{O}}{2} \text { } 100 \mathrm{~kg} \mathrm{~mol} \text { air }=2.90 \mathrm{~kg} \mathrm{~mol} \mathrm{O}
$$

The percentage of excess air is

$$
\begin{aligned}
& \% \text { excess air }=\frac{2}{\mathrm{O}_{2} \text { required }} \times 100
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{O} \text { enteringprocess- }-\mathrm{O} \text { required }
\end{aligned}
$$

Note:

In calculating the amount of excess air, remember that the excess is the amount of air that enters the combustion process over and above that required for complete combustion.

For example, suppose that a gas containing $80 \% \mathrm{C}_{2} \mathrm{H}_{6}$ and $20 \% \mathrm{O}_{2}$ is burned in an engine with 200% excess air. Eighty percent of the ethane goes to $\mathrm{CO}_{2}, 10 \%$ goes to CO , and 10% remained unburned. What is the amount of the excess air per 100 moles of the gas?

Solution

First, you can ignore the information about the CO and the unburned ethane because the basis of the calculation of excess air is complete combustion. Specifically C goes to $\mathrm{CO}_{2} ; \mathrm{S}$ to $\mathrm{SO}_{2}, \mathrm{H}_{2}$ to $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}$ goes to CO_{2} and so on. Second, the oxygen in the fuel cannot be ignored. Based on the reaction

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\frac{7}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

Basis: 100 moles of gas

- 80 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ require $3.5(80)=280$ moles of O_{2} for complete combustion.
- The gas contains 20 moles of O_{2}, so that only $280-20=260$ moles of O_{2} are needed in the entering air for complete combustion.
- Thus, 260 moles of O_{2} are the required O_{2} and the calculation of the 200% excess O_{2} (air) is based on 260 , not 280 , moles of O_{2} :

Entering with air

Required O_{2} :
Excess O_{2} :
Total O_{2} :

$\underline{\text { Moles } \mathrm{O}_{2}}$

260
$(2)(260)=520$
780

Example 31

Figure El0.8 is a sketch of a fuel cell in which a continuous flow of methane $\left(\mathrm{CH}_{4}\right)$ and air $\left(\mathrm{O}_{2}\right.$ plus $\left.\mathrm{N}_{2}\right)$ produce electricity plus CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Special membranes and catalysts are needed to promote the reaction of CH_{4}. Based on the data given in Figure El0.8, you are asked to calculate the composition of the products in P .

Figure E10.8

Solution

Assume a complete reaction occurs because no CH_{4} appears in P . The system is the fuel cell (open, steady state). The necessary preliminary conversions as follows:

$$
\begin{aligned}
& \frac{300 \mathrm{~kg} \mathrm{~A}}{} \left\lvert\, \frac{1 \mathrm{~kg} \mathrm{~mol} \mathrm{~A}}{29.0 \mathrm{~kg} \mathrm{~A}}=10.35 \mathrm{~kg} \mathrm{~mol} \mathrm{~A} \mathrm{in}\right. \\
& \underline{16.0 \mathrm{~kg} \mathrm{CH}_{4}} \left\lvert\, \frac{1 \mathrm{~kg} \mathrm{~mol} \mathrm{CH}}{4} 10.0 \mathrm{~kg} \mathrm{CH}_{4} \quad 1.00 \mathrm{~kg} \mathrm{~mol} \mathrm{CH} 44\right. \text { in } \\
& \underline{10.35 \mathrm{~kg} \mathrm{~mol} \mathrm{~A}} \left\lvert\, \frac{0.21 \mathrm{~kg} \mathrm{~mol} \mathrm{O}}{2} 10.17 \mathrm{~kg} \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}\right. \text { in } \\
& \underline{10.35 \mathrm{~kg} \mathrm{~mol} \mathrm{~A}} \left\lvert\, \frac{0.79 \mathrm{~kg} \mathrm{~mol} \mathrm{~N}_{2}}{1 \mathrm{~kg} \mathrm{~mol} \mathrm{~A}}=8.18 \mathrm{~kg} \mathrm{~mol} \mathrm{~N} 2\right. \text { in }
\end{aligned}
$$

Basis: $16.0 \mathrm{~kg} \mathrm{CH}_{4}$ entering $=1 \mathrm{~kg} \mathrm{~mol} \mathrm{CH} 4$

$$
n_{\mathrm{O}_{2}}^{A}=2.17, n_{\mathrm{N}_{2}}^{A}=8.18
$$

Specifications and calculated quantities: 2

$$
\Sigma n_{i}^{P}=P
$$

Implicit equation:

The element material balances are (in moles):

\[

\]

The species material balances are:

Compound	Out		In		$v_{i} \xi$		g mol
CH_{4} :	$n_{\text {CH }}^{P}$	=	1.0	-	1×1	$=$	0
O_{2} :	$n_{\mathrm{O}_{2}}^{P}$	=	2.17	-	2×1	$=$	0.17
N_{2} :	$n_{\mathrm{N}_{2}}^{P}$	=	8.18	-	0×1	$=$	8.18
CO_{2} :	$n^{P} \mathrm{CO}_{2}$	$=$	0	+	1×1	=	1.0
$\mathrm{H}_{2} \mathrm{O}$:	$n_{\mathrm{H}_{2} \mathrm{O}}^{P}$	=	0	+	2×1	$=$	2.0

The solution of either set of equations gives

$$
n_{\mathrm{CH}_{4}}^{P}=0, n_{\mathrm{O}_{2}}^{P}=0.17, n_{\mathrm{N}_{2}}^{P}=8.18, n_{\mathrm{CO}_{2}}^{P}=1.0, n_{\mathrm{H}_{2} \mathrm{O}}^{P}=2.0, P=11.35
$$

The mole percentage composition of P is

$$
\mathrm{y}_{\mathrm{O}_{2}}=1.5 \%, \mathrm{y}_{\mathrm{N}_{2}}=72.1 \%, \mathrm{y}_{\mathrm{CO}_{2}}=8.8 \%, \text { and } \mathrm{y}_{\mathrm{H}_{2} \mathrm{O}}=17.6 \%
$$

Problems

1. Hydrofluoric acid (HF) can be manufactured by treating calcium fluoride $\left(\mathrm{CaF}_{2}\right)$ with sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. A sample of fluorospar (the raw material) contains 75% by weight CaF_{2} and 25% inert (nonreacting) materials. The pure sulfuric acid used in the process is in 30% excess of that theoretically required. Most of the manufactured HF leaves the reaction chamber as a gas, but a solid cake that contains 5% of all the HF formed, plus CaSO_{4}, inerts, and unreacted sulfuric acid is also removed from the reaction chamber. Assume complete conversion of the CaF_{2} occurs. How many kilograms of cake are produced per 100 kg of fluorospar charged to the process?
2. Corrosion of pipes in boilers by oxygen can be alleviated through the use of sodium sulfite. Sodium sulfite removes oxygen from boiler feedwater by the following reaction:

$$
2 \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NaSO}_{4}
$$

How many pounds of sodium sulfite are theoretically required (for complete reaction) to remove the oxygen from $8,330,000 \mathrm{lb}$ of water ($10^{6} \mathrm{gal}$) containing 10.0 parts per million (ppm) of dissolved oxygen and at the same time maintain a 35% excess of sodium sulfite?
3. Consider a continuous, steady-state process in which the following reactions take place:

$$
\begin{gathered}
\mathrm{C}_{6} \mathrm{H}_{12}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{CO}+12 \mathrm{H}_{2} \\
\mathrm{C}_{6} \mathrm{H}_{12}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}
\end{gathered}
$$

In the process 250 moles of $\mathrm{C}_{6} \mathrm{H}_{12}$ and 800 moles of $\mathrm{H}_{2} \mathrm{O}$ are fed into the reactor each hour. The yield of H_{2} is 40.0% and the selectivity of H_{2} relative to $\mathrm{C}_{6} \mathrm{H}_{14}$ is 12.0. Calculate the molar flow rates of all five components in the output stream.
4. Consider a system used in the manufacture of electronic materials (all gases except Si)

$\mathrm{SiH}_{4}, \mathrm{Si}_{2} \mathrm{H}_{4}, \mathrm{Si}_{2} \mathrm{H}_{6}, \mathrm{H}_{2}$, Si How

many independent element balances can you make for this system?
Chemical Engineering Principles-I
Dr.Ali H.Abbar
5. Methane burns with O_{2} to produce a gaseous product that contains $\mathrm{CH}_{4}, \mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}$, and H_{2}. How many independent element balances can you write for this system?
6. Solve the problems $(1,2 \& 3)$ using element balances.
7. Pure carbon is burned in oxygen. The flue gas analysis is: $\mathrm{CO}_{2} 75 \mathrm{~mol} \%, \mathrm{CO} 14 \mathrm{~mol} \%$ \& $\mathrm{O}_{2} 11 \mathrm{~mol} \%$. What was the percent excess oxygen used?
8. Toluene, $\mathrm{C}_{7} \mathrm{H}_{8}$, is burned with 30% excess air. A bad burner cause 15% of the carbon to form soot (pure C) deposited on the walls of the furnace, what is the Orsat analysis of the gases leaving the furnace?
9. A synthesis gas analyzing $\mathrm{CO}_{2}: 6.4 \%, \mathrm{O}_{2}: 0.2 \%, \mathrm{CO}: 40.0 \%$ and $\mathrm{H}_{2}: 50.8 \%$ (the balance is N_{2}) is burned with excess dry air. The problem is to determine the composition of the flue gas. How many degrees of freedom exist in this problem, that is, how many additional variables must be specified?
10. A coal analyzing $65.4 \% \mathrm{C}, 5.3 \% \mathrm{H}, 0.6 \% \mathrm{~S}, 1.1 \% \mathrm{~N}, 18.5 \% \mathrm{O}$, and 9.1% ash is burned so that all combustible is burnt out of the ash. The flue gas analyzes $13.00 \% \mathrm{CO}_{2}, 0.76 \% \mathrm{CO}, 6.17 \% \mathrm{O}_{2}, 0.87 \% \mathrm{H}_{2}$, and $79.20 \% \mathrm{~N}_{2}$. All of the sulfur burns to SO_{2}, which is included in the CO_{2} in the gas analysis (i.e., $\mathrm{CO}_{2}+\mathrm{SO}_{2}=13 \%$). Calculate:
a. Pounds of coal fired per 100 lb mol of dry flue gas as analyzed;
b. Ratio of moles of total combustion gases to moles of dry air supplied;
c. Total moles of water vapor in the stack gas per 100 lb of coal if the entering air is dry; d. Percent excess air.
11. A hydrocarbon fuel is burnt with excess air. The Orsat analysis of the flue gas shows $10.2 \% \mathrm{CO}_{2}, 1.0 \% \mathrm{CO}$, $8.4 \% \mathrm{O}_{2}$, and $80.4 \% \mathrm{~N}_{2}$. What is the atomic ratio of H to C in the fuel?

Answers:

1. 186 kg
2. 887 lb
3. (a) $\mathrm{C}_{6} \mathrm{H}_{12}=139 \mathrm{~mol} / \mathrm{hr}$; (b) $\mathrm{H}_{2} \mathrm{O}=453 \mathrm{~mol} / \mathrm{hr}$; (c) $\mathrm{CO}=347 \mathrm{~mol} / \mathrm{hr}$; (d) $\mathrm{H}_{2}=640 \mathrm{~mol} / \mathrm{hr}$; (e) $\mathrm{C}_{6} \mathrm{H}_{14}=53.3$ $\mathrm{mol} / \mathrm{hr}$.
4. Two
5. Three
6. See the answers to the problems $(1,2 \& 3)$.
7. 4.5%
8. $9.1 \% \mathrm{CO}_{2}, 8.9 \% \mathrm{O}_{2}, 82 \% \mathrm{~N}_{2}$
9. 1
10. (a) 252; (b) 1.063 ; (c) 2.31 ; (d) 33.8%
11. 0.81
2.6 Material Balance Problems Involving Multiple Units

- A process flowsheet (flowchart) is a graphical representation of a process. A flowsheet describes the actual process in sufficient detail that you can use it to formulate material (and energy) balances.

Chemical Engineering Principles-I

 Dr.Ali H.AbbarFigure 11.1a illustrates a serial combination of mixing and splitting stages. In a mixer, two or more entering streams of different compositions are combined. In a splitter, two or more streams exit, all of which have the same composition. In a separator, the exit streams can be of different compositions.

Figure 11.1a serial mixing and splitting in a system without reaction. Streams 1 plus 2 mix to form Stream 3, and Stream 5 is split into Streams 6 and 7.

Figure 11.1b the dashed line I designates the boundary for overall material balances made on the process in Figure 11.1a.

Figure 11.1c Dashed lines II, III and IV designate the boundaries for material balances around each of the individual units comprising the overall process.

Figure 11.1 d the dashed line V designates the boundary for material balances around a system comprised of the mixing point plus the unit portrayed by the box.

Figure 11.1e the dashed line VI designates the boundary for material balances about a system comprised of the unit portrayed by the box plus the splitter.

Figure 11.1f the dashed line VII designates the boundary for material balances about a system comprised of the mixer plus the splitter.

Example 32

Acetone is used in the manufacture of many chemicals and also as a solvent. In its latter role, many restrictions are placed on the release of acetone vapor to the environment. You are asked to design an acetone recovery system having the flow sheet illustrated in Figure El1.1. All the concentrations shown in El1.1 of both the gases and liquids are specified in weight percent in this special case to make the calculations simpler. Calculate, $\mathrm{A}, \mathrm{F}, \mathrm{W}, \mathrm{B}$, and D per hour.
$\mathrm{G}=1400 \mathrm{~kg} / \mathrm{hr}$.

Chemical Engineering Principles-I
Dr.Ali H.Abbar

Solution

This is an open, steady-state process without reaction. Three subsystems exist.

Pick 1 hr as a basis so that $\mathrm{G}=1400 \mathrm{~kg}$.

Figure E11.1

The mass balances for Unit 1 (Absorber Column)

	$\frac{c}{c n}$		Out	
Air:	$1400(0.95)$	$=$	$A(0.995)$	
Acetone:	$1400(0.03)$	$=F(0.19)$		
Water:	$1400(0.02)+W(1.00)$	$=F(0.81)+A(0.005)$		

(a)
(b)
(c)

Solve Equations (a), (b), and (c) to get $\mathrm{A}=1336.7 \mathrm{~kg} / \mathrm{hr}, \mathrm{F}=221.05 \mathrm{~kg} / \mathrm{hr}$ and $\mathrm{W}=157.7 \mathrm{~kg} / \mathrm{hr}$ (Check)
Use the total balance (Absorber Column).

$$
\begin{array}{ll}
G+W= & A+F \\
1400 & 1336 \\
\frac{157.7}{1557.7} \cong & \frac{221.05}{1557.1}
\end{array}
$$

The mass balances for the combined Units 2 plus 3 (Distillation \& Condenser) are:

$$
\begin{array}{ll}
\text { Acetone: } & 221.05(0.19)=D(0.99)+B(0.04) \\
\text { Water: } & 221.05(0.81)=D(0.01)+B(0.96) \tag{e}
\end{array}
$$

Solve Equations (d) and (e) simultaneously to get $\mathrm{D}=34.90 \mathrm{~kg} / \mathrm{hr}$ and $\mathrm{B}=186.1 \mathrm{~kg} / \mathrm{hr}$
(Check) Use the total balance (Distillation \& Condenser)

$$
F=D+B \text { or } 221.05 \cong 34.90+186.1=221.0
$$

Note

As a matter of interest, what other mass balances could be written for the system and substituted for any one of the Equations (a) through (e)? Typical balances would be the overall balances Chemical Engineering Principles-I

Dr.Ali H.Abbar

	In		Out					(f)
Air:	$G(0.95)$	$=$	$A(0.995)$					
Acetone:	$G(0.03)$	$=$			$D(0.99)$	$+$	$B(0.04)$	(g)
Water:	$G(0.02)+W$	$=$	$A(0.005)$	+	$D(0.01)$	$+$	$B(0.96)$	(h)
Total	$G+W$	$=$	A	+	D	$+$	B	(i)

Example 33

In the face of higher fuel costs and the uncertainty of the supply of a particular fuel, many companies operate two furnaces, one fired with natural gas and the other with fuel oil. The gas furnace uses air while the oil furnace uses an oxidation stream that analyzes: $\mathrm{O}_{2}, 20 \% ; \mathrm{N}_{2}, 76 \%$; and $\mathrm{CO}_{2}, 4 \%$. The stack gases go up a common stack, See Figure El1.2.

The reserve of fuel oil was hours could the company if no additional fuel oil was $\mathrm{mol} / \mathrm{hr}$ of natural gas were minimum heating load for into the stack gas output was

Figure E11.2
only 560 bbl. How many operate before shutting down attainable? How many lb being consumed? The the company when translated $6205 \mathrm{lb} \mathrm{mol} / \mathrm{hr}$ of dry stack gas. The molecular weight of the fuel oil was $7.91 \mathrm{lb} / \mathrm{lb} \mathrm{mol}$, and its density was $7.578 \mathrm{lb} / \mathrm{gal}$.

Solution

This is an open, steady-state process with reaction. Two subsystems exist.

$$
\text { Basis: } 1 \mathrm{hr} \text {, so that } \mathrm{P}=6205 \mathrm{lb} \mathrm{~mol}
$$

The overall balances for the elements are (in pound moles)
Chemical Engineering Principles-I

2H:	In				Out
	G(1.94)	$+$	$F(0.47)$	$=$	$W(1)$
2 N :	$A(0.79)$	$+$	$A^{*}(0.76)$	=	6205(0.8493)
2O:	$A(0.21)$	$+$	$A^{*}(0.20+0.04)$		$6205(0.0413+0.001+0.1084)$
			+G(0.02)	$=$	$+W(1 / 2)$
S:	$F(0.03)$			$=$	6205(0.0010)
C:	$G(0.96)$	$+$	(2) $(0.02)+0.02$		
		$+$	$F(0.50)+0.04 \mathrm{~A}^{*}$		6205(0.1084)

Solve the S balance for F ; the sulfur is a tie component. Then solve for the other four balances simultaneously for G .
The results are:
$\mathrm{F}=207 \mathrm{lb} \mathrm{mol} / \mathrm{hr}$ and $\mathrm{G}=499 \mathrm{lb} \mathrm{mol} / \mathrm{hr}$

Finally, the fuel oil consumption is

$$
\left.\frac{207 \mathrm{lb} \mathrm{~mol}}{\mathrm{hr}}\left|\frac{7.91 \mathrm{lb}}{\mathrm{lb} \mathrm{~mol}}\right| \frac{\mathrm{gal}}{7.578 \mathrm{lb}} \right\rvert\, \frac{\mathrm{bbl}}{42 \mathrm{gal}}=5.14 \mathrm{bbl} / \mathrm{hr}
$$

If the fuel oil reserves were only 560 bbl ,

$$
\frac{560 \mathrm{bbl}}{5.14 \frac{\mathrm{bbl}}{\mathrm{hr}}}=109 \mathrm{hr}
$$

Example 34

Figure E11.3 shows the process and the known data. You are asked to calculate the compositions of every flow stream, and the fraction of the sugar in the cane that is recovered.

Figure E11.3

Solution

Basis: 1 hour ($\mathrm{M}=1000 \mathrm{lb}$) Let
$\mathrm{S}=\operatorname{sugar}, \mathrm{P}=$ pulp, and $\mathrm{W}=$ water.

For the crystallizer the equations are

$$
\text { (using } \omega_{W}^{K}=1-0.40=0.60 \text {) }
$$

Sugar: K (0.40) $=\mathrm{L}(0)+1000$

Water: K (0.60) = L + 0
Chemical Engineering Principles-I
Dr.Ali H.Abbar

From which you get $\mathrm{K}=2500 \mathrm{lb}$ and $\mathrm{L}=1500 \mathrm{lb}$.

Check using the total flows: $\quad 2500=1500+1000=2500$

Using same method for solution: evaporator, screen, and lastly solve the equations for the mill.
The results for all of the variables are:

$$
\begin{aligned}
& \frac{l b}{D=16,755} \\
& D=16,755 \\
& E=7,819 \\
& F=24,574 \\
& G=1,152 \\
& H=6,667 \\
& \begin{array}{l}
\text { mass fraction } \\
\omega_{S}^{D}=0.174
\end{array} \\
& \omega_{W}^{D}=0.026 \\
& \omega_{W}^{E}=0.73 \\
& \omega_{S}^{G}=0.014 \\
& \text { } \\
& \omega_{W}^{G}=0.036 \\
& J=4,167 \\
& \omega_{W}^{H}=0.85 \\
& K=2,500 \\
& \omega_{W}^{K}=0.60
\end{aligned}
$$

The fraction of sugar recovered $=[$ product (sugar) $/$ in (sugar) $]$

$$
=[1000 /(24,574) *(0.16)]=0.25
$$

Problems

1. A two-stage separations unit is shown in Figure SAT11P1. Given that the input stream Fl is $1000 \mathrm{lb} / \mathrm{hr}$, calculate the value of F2 and the composition of F2.

2. A simplified process for the production of SO_{3} to be used in the manufacture of sulfuric acid is illustrated in Figure SAT11P2. Sulfur is burned with 100% excess air in the burner, but for the reaction $\mathrm{S}+\mathrm{O}_{2} \quad \mathrm{SO}_{2}$, only 90% conversion of the S to SO_{2} is achieved in the burner. In the converter, the conversion of SO_{2} to SO_{3} is 95% complete. Calculate the kg of air required per 100 kg of sulfur burned, and the concentrations of the components in the exit gas from the burner and from the converter in mole fractions.

Figure SAT11P2
3. In the process for the production of pure acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$ (see Figure SAT11P3), pure methane $\left(\mathrm{CH}_{4}\right)$, and pure oxygen are combined in the burner, where the following reactions occur:

$$
\begin{align*}
& \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \tag{1}\\
& \mathrm{CH}_{4}+1 \frac{1}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO} \tag{2}\\
& 2 \mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+3 \mathrm{H}_{2} \tag{3}
\end{align*}
$$

a. Calculate the ratio of the moles of O_{2} to moles of CH_{4} fed to the burner.
b. On the basis of 100 lb mol of gases leaving the condenser, calculate how many pounds of water are removed by the condenser.
c. What is the overall percentage yield of product (pure) $\mathrm{C}_{2} \mathrm{H}_{2}$, based on the carbon in the natural gas entering the burner?

Figure SAT11P3
The gases from the burner are cooled in the condenser that removes all of the water. The analysis of the gases leaving the condenser is as follows:

	Mol \%
	8.5
$\mathrm{C}_{2} \mathrm{H}_{2}$	25.5
H_{2}	58.3
CO	3.7
CO_{2}	4.0
CH_{4}	100.0
Total	

These gases are sent to an absorber where 97% of the $\mathrm{C}_{2} \mathrm{H}_{2}$ and essentially all the CO_{2} are removed with the solvent. The solvent from the absorber is sent to the CO_{2} stripper, where all the CO_{2} is removed. The analysis of the gas stream leaving the top of the CO_{2} stripper is as follows:

Dr.Ali H.Abbar

	Mol \%
$\mathrm{C}_{2} \mathrm{H}_{2}$	7.5
CO_{2}	$\underline{92.5}$
Total	100.0

The solvent from the CO_{2} stripper is pumped to the $\mathrm{C}_{2} \mathrm{H}_{2}$ stripper, which removes all the $\mathrm{C}_{2} \mathrm{H}_{2}$ as a pure product.

Answers:

1. Assume that the compositions in the figure are mass fractions. Then:

	lb	mass fraction
Toluene	396	0.644
Benzene	19.68	0.032
Xylene	200	0.325

2. 863 lb air/lb S

	Converter	Burner
SO_{2}	0.5%	9.5%
SO_{3}	9.4	-
O_{2}	7.4	11.5
$\mathrm{~N}_{2}$	82.7	79.0

3. (a) 1.14 ; (b) 2240 lb ; (c) 9.9%.
2.7 Recycle, Bypass, Purge, and the Industrial Application of Material Balances

Introduction

- Recycle is fed back from a downstream unit to an upstream unit, as shown in Figure 12.lc. The stream containing the recycled material is known as a recycle stream.
- Recycle system is a system that includes one or more recycle streams.
- Because of the relatively high cost of industrial feedstocks, when chemical reactions are involved in a process, recycle of unused reactants to the reactor can offer significant economic savings for high-volume processing systems. Heat recovery within a processing unit (energy recycle) reduces the overall energy consumption of the process.

Dr.Ali H.Abbar

Figure 12.1: Figure 12.la shows a single unit with serial flows. Figure 12.b shows multiple units but still with serial flows. Figure 12.lc shows the addition of recycle.

Recycle without Chemical Reaction
тм Recycle of material occurs in a variety of processes that do not involve chemical reaction, including distillation, crystallization, and heating and refrigeration systems.

тм Examine Figure 12.2. You can write material balances for several different systems, four of which are shown by dashed lines in Figure 12.2 (Overall balance 1, Mixer balance 2, Process balance 3 \& Separator balance 4).

Tм The fresh feed enters the overall system and the overall or net product is removed.
TM The total (gross) feed enters the process and the gross product is removed.
TM In addition, you can make balances (not shown in Figure 12.2) about combinations of subsystems, such as the process plus the separator (3 plus 4), or the mixing point plus the process (2 plus 3).

Figure 12.2 Process with recycle (the numbers designate possible system boundaries for the material balances).

Example 35

Figure E12.la is a schematic of a process for the production of flake NaOH , which is used in households to clear plugged drains in the plumbing (e.g., Drano).

Figure E12.1a

The fresh feed to the process is $10,000 \mathrm{lb} / \mathrm{hr}$ of a 40% aqueous NaOH solution. The fresh feed is combined with the recycled filtrate from the crystallizer, and fed to the evaporator where water is removed to produce a $50 \% \mathrm{NaOH}$ solution, which in turn is fed to the crystallizer. The crystallizer produces a filter cake that is $95 \% \mathrm{NaOH}$ crystals and 5% solution that itself consists of $45 \% \mathrm{NaOH}$. The filtrate contains $45 \% \mathrm{NaOH}$.
a. You are asked to determine the flow rate of water removed by the evaporator, and the recycle rate for this process.
b. Assume that the same production rate of NaOH flakes occurs, but the filtrate is not recycled. What would be the total feed rate of $40 \% \mathrm{NaOH}$ have to be then? Assume that the product solution from the evaporator still contains $50 \% \mathrm{NaOH}$.

Solution

Open, steady-state process.
a. Basis: $10,000 \mathrm{lb}$ fresh feed (equivalent to 1 hour) The
unknowns are $\mathrm{W}, \mathrm{G}, \mathrm{P}$, and R .
Overall NaOH balance

$$
\begin{aligned}
& (0.4)(10,000)=0.95 \mathrm{P}+(0.45)(0.05) \mathrm{P} \\
& \mathrm{P}=4113 \mathrm{lb}
\end{aligned}
$$

Overall $\mathrm{H}_{2} \mathrm{O}$ balance

$$
\begin{aligned}
& (0.6)(10,000)=\mathrm{W}+[(0.55)(0.05)](4113) \\
& \mathrm{W}=5887 \mathrm{lb}
\end{aligned}
$$

(or use the overall total balance $10,000=4113+W$)

The total amount of NaOH exiting with P is $\quad[(0.95)+(0.45)(0.05)](4113)=4000 \mathrm{lb}$

NaOH balance on the crystallizer $\quad 0.5 \mathrm{G}=4000+0.45 \mathrm{R}$
$\mathrm{H}_{2} \mathrm{O}$ balance on the crystallizer $\quad 0.5 \mathrm{G}=113+0.55 \mathrm{R}$
(or use the total balance $\mathrm{G}=\mathrm{R}+4113$)

$$
\mathrm{R}=38,870 \mathrm{lb}
$$

b. Figure E12.lb.

Figure E12.1b
The basis is now $\mathrm{P}=4113 \mathrm{lb}$ (the same as 1 hour) The
unknowns are now $\mathrm{F}, \mathrm{W}, \mathrm{G}$, and H .
NaOH balance on the crystallizer

$$
0.5 \mathrm{G}=[(0.95)+(0.05)(0.45)](4113)+0.45 \mathrm{H}
$$

$\mathrm{H}_{2} \mathrm{O}$ balance on the crystallizer

$$
\begin{gathered}
0.5 \mathrm{G}=[(0.05)(0.55)(4113)]+0.55 \mathrm{H} \\
\mathrm{H}=38,870 \mathrm{lb}
\end{gathered}
$$

Overall NaOH balance

$$
\begin{gathered}
0.40 \mathrm{~F}=0.45(38,870)+4000 \\
\mathrm{~F}=53,730 \mathrm{lb}
\end{gathered}
$$

: Note that without recycle, the feed rate must be 5.37 times larger than with recycle to produce the same amount of product.

Recycle with Chemical Reaction

: The most common application of recycle for systems involving chemical reaction is the recycle of reactants, an application that is used to increase the overall conversion in a reactor. Figure 12.3 shows a simple example for the reaction

Figure 12.3 A simple recycle system with chemical reaction.

If you calculate the extent of reaction for the overall process in Figure 12.3 based on B

$$
\xi_{\text {overall }}=\frac{100-0}{1}=100 \text { moles reacting }
$$

If you use material balances to calculate the output P of the reactor (on the basis of 1 second) you get $\mathrm{A}=900 \mathrm{~g} \mathrm{~mol}$ $\mathrm{B}=100 \mathrm{~g} \mathrm{~mol}$

And the extent of reaction based on B for the reactor by itself as the system is

$$
\xi_{\text {reactor }}=\frac{100-0}{1}=100 \text { moles reacting }
$$

In general, the extent of reaction is the same regardless of whether an overall material balance is used or a material balance for the reactor is used.

- Two types of conversion when reactions occur:

1. Overall fraction conversion:
mass (moles) of reactant in the fresh feed-mass (moles) of reactant in the output of the overall process

mass (moles) of reactant in the fresh feed

2. Single - pass ("once - through") fraction conversion:
mass (moles) of reactant fed into the reactor-mass (moles) of reactant exiting the reactor mass
(moles) of reactant fed into the reactor

For the simple recycle reactor in Figure 12.3, the overall conversion is

$$
\frac{100-0}{100} \times 100=100 \%
$$

And the single-pass conversion is

$$
\frac{1000-900}{1000} \times 100=10 \%
$$

When the fresh feed consists of more than one reactant, the conversion can be expressed for a single component, usually the limiting reactant, or the most important (expensive) reactant.

- The overall conversion and the single-pass conversion can be expressed in terms of the extent of reaction, ξ.

$$
\begin{gather*}
\text { Overall conversion of species } \mathrm{A}=f_{\mathrm{OA}}=\frac{-v_{\mathrm{A}} \xi}{n_{\mathrm{A}}^{\text {rresh feed }}} \tag{12.1}\\
\text { Single-pass conversion }=f_{\mathrm{SP}}=\frac{-v_{\mathrm{A}} \xi}{n_{\mathrm{A}}^{\text {reactor feed }}} \tag{12.2}\\
\qquad \frac{f_{\mathrm{SP}}}{f_{\mathrm{OA}}}=\frac{n_{\mathrm{A}}^{\text {fresh feed }}}{n_{\mathrm{A}}^{\text {fresh feed }}+n_{\mathrm{A}}^{\text {recycle }}} \tag{12.3}
\end{gather*}
$$

Example 36

Cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ can be made by the reaction of benzene $(\mathrm{Bz})\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ with hydrogen according to the following reaction:

$$
\mathrm{C}_{6} \mathrm{H}_{6}+3 \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12}
$$

For the process shown in Figure El2.2, determine the ratio of the recycle stream to the fresh feed stream if the overall conversion of benzene is 95%, and the single-pass conversion is 20%. Assume that 20% excess hydrogen is used in the fresh feed, and that the composition of the recycle stream is $22.74 \mathrm{~mol} \%$ benzene and $77.26 \mathrm{~mol} \%$ hydrogen.

Figure E12.2 Schematic of a recycle reactor.

Solution

The process is open and steady state.

$$
\text { Basis }=100 \mathrm{~mol}(\mathrm{~g} \mathrm{~mol} \text { or } \mathrm{lb} \mathrm{~mol}) \text { of fresh benzene feed }
$$

Excess $\mathrm{H}_{2}=($ in - required $) /$ required (for complete reaction) In
H_{2} (Feed):

$$
n_{\mathrm{H}_{2}}^{\mathrm{F}}=100(3)(1+0.20)=360 \mathrm{~mol}
$$

The total fresh feed $=100+360=460$
From Equation (12.1) for benzene ($v_{B z}$

$$
0.95=\frac{-(-1) \xi}{100} \quad \begin{array}{ll}
\text { mol }
\end{array}
$$

$\xi=95$ reacting moles.
The unknowns are $R, n_{\mathrm{B}_{2}}^{P}, n_{\mathrm{H}_{2}}^{P}$, and $n_{\mathrm{C}_{6} \mathrm{H}_{12}}^{P}$.
The species overall balances are

$$
n_{\mathrm{i}}^{\text {out }}=n_{\mathrm{i}}^{\text {in }}+\nu_{\mathrm{i}} \xi_{\text {overall }}
$$

$$
\begin{aligned}
\mathrm{Bz}: \quad n_{\mathrm{Bz}}^{\mathrm{P}}=100+(-1)(95) & =5 \mathrm{~mol} \\
\mathrm{H}_{2}: \quad n_{\mathrm{H}_{2}}^{\mathrm{P}}=360+(-3)(95) & =75 \mathrm{~mol} \\
\mathrm{C}_{6} \mathrm{H}_{12} \quad n_{\mathrm{C}_{6} \mathrm{H}_{12}}^{\mathrm{P}}=0+(1)(95) & =95 \mathrm{~mol} \\
P & =175 \mathrm{~mol}
\end{aligned}
$$

The amount of the Bz feed to the reactor is $100+0.2274 \mathrm{R}$, and $\xi=95$. Thus, for benzene

$$
0.20=\frac{-(-1) 95}{100+0.2274 R}
$$

and

$$
\mathrm{R}=1649 \mathrm{~mol}
$$

Finally, the ratio of recycle to fresh feed is

$$
\frac{R}{F}=\frac{1649 \mathrm{~mol}}{460 \mathrm{~mol}}=3.58
$$

Example 37

Immobilized glucose isomerase is used as a catalyst in producing fructose from glucose in a fixed-bed reactor (water is the solvent). For the system shown in Figure El2.3a, what percent conversion of glucose results on one pass through the reactor when the ratio of the exit stream to the recycle stream in mass units is equal to 8.33 ? The reaction is

$$
\begin{array}{cc}
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} & \rightarrow \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \\
\text { Glucose } & \text { Fructose }
\end{array}
$$

(a)

Figure E12.3a
Solution
The process is an open, steady-state process with a reaction occurring and a recycle.
: Figure E12.3b includes all the known and unknown values of the variables using appropriate notation (W stands for water, G for glucose, and F for fructose).
: Note that the recycle stream and product stream have the same composition, and consequently the same mass
symbols are used in the diagram for each stream.

(b)

Figure E12.3b
Pick as a basis $\mathrm{S}=100 \mathrm{~kg}$
Overall balances
Total: $\quad \mathrm{P}=\mathrm{S}=100 \mathrm{~kg}$
Consequently,

$$
R=\frac{100}{8.33}=12.0 \mathrm{~kg}{ }_{[\mathrm{P} / \mathrm{R}=8.33]}
$$

Overall no water is generated or consumed, hence

Water:

$$
\begin{aligned}
& 100(0.60)=P \omega_{W}^{R}=100 \omega_{W}^{R} \\
& \omega_{W}^{R}=0.60
\end{aligned}
$$

Mixing point 1

Total: $\quad 100+12=\mathrm{T}=112$
Glucose: $\quad 100(0.40)+12 \omega_{G}^{R}=112 \omega_{G}^{T}$
Fructose: $\quad 0+12 \omega_{F}^{R}=112(0.04)$
Or $\quad \omega_{F}^{R}=0.373$
Chemical Engineering Principles-I
Dr.Ali H.Abbar
Also, because $\omega_{F}^{R}+\omega_{G}^{R}+\omega_{W}^{R}=1$,
$\omega_{G}^{R}=1-0.373-0.600=0.027$
Next from the glucose balance

$$
\omega_{G}^{T}=0.360
$$

Reactor plus Separator 2
Total: $\quad \mathrm{T}=12+100=112$ (a redundant equation)
Glucose:

$$
\begin{aligned}
& \omega_{G}^{T} T-(R+P)\left(\omega_{G}^{R}\right)=(f)\left(\omega_{G}^{T} T\right) \\
& (0.360)(112)-(112)(0.027)=f(0.360)(112) \\
& 40.3-3.02=f(40.32) \\
& \quad f=0.93
\end{aligned}
$$

Check by using Equation 12.2 and the extent of reaction

$$
\xi=\frac{3.02-40}{-1}=37 f=\frac{-(-1)(37)}{40}=0.93
$$

Example 38

Reactors that involve biological materials (bioreactors) use living organisms to produce a variety of products. Bioreactors are used for producing ethanol, antibiotics, and proteins for dietary supplements and medical diagnosis. Figure E12.4 shows a recycle bioreactor in which the overall conversion of the proprietary component in the fresh feed to product is 100%. The conversion of the proprietary component to product per pass in the reactor is 40%. Determine the amount of recycle and the mass percent of component in the recycle stream if the product stream contains 90% product, and the feed to the reactor contains $3 \mathrm{wt} \%$ of the component.

Figure E12.4
Assume that the component and the product have essentially the same molecular weight, and that the waste contains only water and dead cells.

Solution

$$
\text { Basis }=100 \mathrm{~kg} \text { of fresh feed }(\mathrm{F}) .
$$

Overall balances
Total balance: $100=\mathrm{P}+\mathrm{W}$
Component balance: $0.10(100)=0.90 \mathrm{P}$

$$
\mathrm{P}=11.1 \mathrm{~kg} \quad \mathrm{~W}=88.9 \mathrm{~kg}
$$

The reactor plus the product recovery unit balance

$$
\begin{aligned}
& \text { Accumulation Input Output Generation Consumption } \\
& 0=[100(0.10)+R \omega]-R \omega+0 \quad-0.40[100(0.10)+R \omega] \\
& R \omega=15 \mathrm{~kg} \text { of component in the recycle stream }
\end{aligned}
$$

Component balance: $100(0.10)+15=0.03 \mathrm{~F}^{\prime} \longrightarrow \mathrm{F}^{\prime}=833 \mathrm{~kg}$

$$
\begin{array}{r}
\mathrm{R}+100=\mathrm{F} \longrightarrow \mathrm{R}=833-100=733 \mathrm{~kg} \\
\omega=\frac{15}{733}=0.0205
\end{array}
$$

Mixer balance Total
balance:

Bypass and Purge
a. A bypass stream - a stream that skips one or more stages of the process an goes directly to another downstream stage (Figure 12.4).

A bypass stream can be used to control the composition of a final exit stream from a unit by mixing the bypass stream and the unit exit stream in suitable proportions to obtain the desired final composition

Figure 12.4 A process with a bypass stream.
b. A purge stream-a stream bled off from the process to remove an accumulation of inert or unwanted material that might otherwise build up in the recycle stream (Figure 12.5).

Figure 12.5 A process with a recycle stream with purge

Example 39

In the feedstock preparation section of a plant manufacturing natural gasoline, isopentane is removed from butane-free gasoline. Assume for purposes of simplification that the process and components are as shown in Figure E12.5. What fraction of the butane-free gasoline is passed through the isopentane tower? The process is in the steady state and no reaction occurs.

Figure E12.5
Solution

$$
\text { Basis: } 100 \mathrm{~kg} \text { feed }
$$

Overall balances
Total material balance:

$$
\begin{equation*}
\frac{I n}{100}=\frac{O u t}{S+P} \tag{a}
\end{equation*}
$$

Component balance for $\mathrm{n}-\mathrm{C}_{5}$ (tie component)

$$
\begin{equation*}
\frac{\text { In }}{100(0.80)}=\frac{\text { Out }}{S(0)+P(0.90)} \tag{b}
\end{equation*}
$$

Consequently,

$$
\begin{aligned}
& P=100\left(\frac{0.80}{0.90}\right)=88.9 \mathrm{~kg} \\
& S=100-88.9=11.1 \mathrm{~kg}
\end{aligned}
$$

Balance around isopentane tower:
Let x be the kg of butane-free gas going to the isopentane tower, and y be the kg of the $\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}$ stream leaving the isopentane tower.

Total material balance:

$$
\begin{equation*}
\frac{I n}{x}=\frac{O u t}{11.1+y} \tag{c}
\end{equation*}
$$

Component balance for $\mathrm{n}^{-\mathrm{C}_{5}}$

$$
\begin{equation*}
x(0.80)=y \tag{d}
\end{equation*}
$$

Consequently, combining (c) and (d) yields $\quad \mathrm{x}=55.5 \mathrm{~kg}$, or the desired fraction is 0.55 .

Another approach to this problem is to make a balance at mixing points 1 and 2.

Balance around mixing point 2:
Material into junction $=$ Material out
Total material: $(100-x)+y=88.9$
(e)

Component (iso-C5): $(100-\mathrm{x})(0.20)+0=88.9(0.10)$
(f) Solving
yields $\quad x=55.5 \mathrm{~kg}$ as before

Example 40

Figure E12.6 illustrates a steady-state process for the production of methanol. All of the compositions are in mole fractions or percent. The stream flows are in moles.

Figure E12.6
Note in Figure E12.6 that some CH_{4} enters the process, but does not participate in the reaction. A purge stream is used to maintain the CH_{4} concentration in the exit from the separator at no more than $3.2 \mathrm{~mol} \%$, and prevent hydrogen buildup as well. The once-through conversion of the CO in the reactor is 18%.

Compute the moles of recycle, $\mathrm{CH}_{3} \mathrm{OH}$, and purge per mole of feed, and also compute the purge gas composition.

Solution

The mole fraction of the components in the purge stream have been designated as x , y , and z for $\mathrm{H}_{2}, \mathrm{CO}$, and CH_{4}, respectively.

$$
\text { Basis: } \mathrm{F}=100 \mathrm{~mol} \text { The }
$$

variables whose values are unknown are $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{E}, \mathrm{P}$, and R .
The implicit mole fraction balance in the recycle stream

$$
z=0.032
$$

$$
x+y+z=1
$$

(b) The overall
element balances are (in moles):

$$
\begin{array}{ll}
2 \mathrm{H}: & 67.3+0.2(2)
\end{array}=E(2)+P(x+2 z), ~ \begin{array}{ll}
\mathrm{C}: & 32.5+0.2 \\
\mathrm{O}: & 32.5 \tag{d}
\end{array}
$$

(e)

Reactor plus the Separator

$$
\begin{equation*}
\text { CO: } \frac{\text { In }}{[32.5+R y]}-\frac{\text { Out }}{[y(R+P)]}=\frac{\text { Consumed }}{(32.5+R y)(0.18)} \tag{f}
\end{equation*}
$$

Equation (a) can be substituted into Equations (b) through (f), and the resulting five equations solved by successive substitution or by using a computer program. The resulting values obtained are (in moles)

E	$\mathrm{CH}_{3} \mathrm{OH}$	31.25
P	purge	6.25
R	recycle	705
x	H_{2}	0.768
y	CO	0.200
z	CH_{4}	0.032

Problems

1. How many recycle streams occur in Figure SAT12.1PI?

Figure SAT12.1P1
2. The Hooker Chemical Corporation operates a process in Michigan for the purification of HCl. Figure SATI2.1P2 shows the flow sheet for the Hooker process. The streams from the bottoms of the five towers are liquid. The streams from the tops of the towers are gases. HCl is insoluble in the HCB (hexachlorobutadiens).

The various stream compositions are shown in Figure SAT12.1P2.
How many recycle streams are there in the Hooker process?

Figure SAT12.1P2
3. A ball mill grinds plastic to make a very fine powder. Look at Figure SAT12.2P1.

Figure SAT12.2P1

At the present time $10,000 \mathrm{~kg}$ of powder are produced per day. You observe that the process (shown by the solid lines) is inefficient because 20% of the feed is not recovered as powder-it goes to waste.
You make a proposal (designated by the dashed lines) to recycle the uncollected material back to the feed so that it can be remilled. You plan to recycle 75% of the 200 kg of uncollected material back to the feed stream. If the feed costs $\$ 1.20 / \mathrm{kg}$, how much money would you save per day while producing $10,000 \mathrm{~kg}$ of fine powder?
4. Sea water is to be desalinized by reverse osmosis using the scheme indicated in Figure SATI2.2P2. Use the data given in the figure to determine: (a) the rate of waste brine removal (B); (b) the rate of desalinized water (called potable water) production (P); (c) the fraction of the brine leaving the reverse osmosis cell (which acts in essence as a separator) that is recycled.

Figure SAT12.2P2
5. A material containing 75% water and 25% solid is fed to a granulator at a rate of $4000 \mathrm{~kg} / \mathrm{hr}$. The feed is premixed in the granulator with recycled product from a dryer, which follows the granulator (to reduce the water concentration of the overall material fed into the granulator to 50% water, 50% solid). The product that leaves the dryer is 16.7% water. In the dryer, air is passed over the solid being dried. The air entering the dryer contains 3% water by weight (mass), and the air leaving the dryer contains 6% water by weight (mass).
a. What is the ratio of the recycle to the feed entering the granulator?
b. What is the rate of air flow to the dryer on a dry basis?
6. Benzene, toluene, and other aromatic compounds can be recovered by solvent extraction with sulfur dioxide $\left(\mathrm{SO}_{2}\right)$. Figure SAT12.2P4 is the process schematic. As an example, a catalytic reformate stream containing 70\% benzene and 30% nonbenzene material is passed through the countercurrent extractive recovery scheme shown in Figure SAT12.2P4. 1000 lb of reformate and 3000 lb of SO_{2} are fed to the system per hour. The benzene product stream contains 0.15 lb of SO_{2} per lb of benzene. The raffinate stream contains all the initially charged nonbenzene material as well as 0.25 lb of benzene per lb of nonbenzene material. The remaining component in the raffinate stream is SO_{2}. How many lb of benzene are extracted in the product stream on an hourly basis? How many lb of raffinate are produced per hour?

Figure SAT12.2P4
7. A catalytic dehydrogenation process shown in Figure SAT12.3Pl, produces 1,3 butadiene $\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)$ from pure normal butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$. The product stream contains $75 \mathrm{~mol} / \mathrm{hr}$ of H_{2} and $13 \mathrm{~mol} / \mathrm{hr}$ of $\mathrm{C}_{4} \mathrm{H}_{10}$ as well as $\mathrm{C}_{4} \mathrm{H}_{6}$. The recycle stream is $30 \%(\mathrm{~mol}) \mathrm{C}_{4} \mathrm{H}_{10}$ and $70 \%(\mathrm{~mol}) \mathrm{C}_{4} \mathrm{H}_{6}$, and the flow is $24 \mathrm{~mol} / \mathrm{hr}$.

Figure SAT12.3P1
(a) What are the feed rate, F , and the product flow rate of $\mathrm{C}_{4} \mathrm{H}_{6}$ leaving the process?
(b) What is the single-pass conversion of butane in the process?
8. Pure propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ from El Paso is dehydrogenated catalytically in a continuous process to obtain propylene $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$. All of the hydrogen formed is separated from the reactor exit gas with no loss of hydrocarbon. The hydrocarbon mixture is then fractionated to give a product stream containing 88 mole \% propylene and 12 mole \% propane. The other stream, which is 70 mole \% propane and 30 mole \% propylene, is recycled. The one-pass conversion in the reactor is 25%, and 1000 kg of fresh propane are fed per hour. Find (a) the kg of product stream per hour, and (b) the kg of recycle stream per hour.
9. Ethyl ether is made by the dehydration of ethyl alcohol in the presence of sulfuric acid at $140^{\circ} \mathrm{C}$:

$$
2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}
$$

Figure SAT12.3P3 is a simplified process diagram. If 87% conversion of the alcohol fed to the reactor occurs per pass in the reactor, calculate: (a) kilograms per hour of fresh feed, and (b) kilograms per hour of recycle.

Figure SAT12.3P3
10. In the famous Haber process (Figure SAT12.4P1) to manufacture ammonia, the reaction is carried out at pressures of 800 to 1000 atm and at 500 to $600^{\circ} \mathrm{C}$ using a suitable catalyst. Only a small fraction of the material entering the reactor reacts on one pass, so recycle is needed. Also, because the nitrogen is obtained from the air, it contains almost 1% rare gases (chiefly argon) that do not react. The rare gases would continue to build up in the recycle until their effect on the reaction equilibrium would become adverse. Therefore, a small purge stream is used.

Dr.Ali H.Abbar

Figure SAT12.4P1
The fresh feed of gas composed of $75.16 \% \mathrm{H}_{2}, 24.57 \% \mathrm{~N}_{2}$, and $0.27 \% \mathrm{Ar}$ is mixed with the recycled gas and enters the reactor with a composition of $79.52 \% \mathrm{H}_{2}$. The gas stream leaving the ammonia separator contains $80.01 \% \mathrm{H}_{2}$ and no ammonia. The product ammonia contains no dissolved gases. Per 100 moles of fresh feed:
a. How many moles are recycled and purged?
b. What is the percent conversion of hydrogen per pass?
11. Figure SAT12.4P2 shows a simplified process to make ethylene dichloride $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{C1}_{2}\right)$. The feed data have been placed on the figure. Ninety percent conversion of the $\mathrm{C}_{2} \mathrm{H}_{4}$ occurs on each pass through the reactor. The overhead stream from the separator contains 98% of the Cl_{2} entering the separator, 92% of the entering $\mathrm{C}_{2} \mathrm{H}_{4}$, and 0.1% of the entering $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{C1}_{2}$. Five percent of the overhead from the separator is purged. Calculate (a) the flow rate and (b) the composition of the purge stream.

Figure SAT12.4P2

Answers:

1. 2
2. 5
3. $\$ 2250$
4. (a) $591 \mathrm{lb} / \mathrm{hr}$; (b) $409 \mathrm{lb} / \mathrm{hr}$; (c) 0.55
5. (a) ratio $=3000 \mathrm{~kg}$ of recycle $/ \mathrm{hr}$ and feed $=7000 \mathrm{~kg} / \mathrm{hr}$; (b) air $=85,100 \mathrm{~kg} / \mathrm{hr}$
6. (a) benzene extracted: $\mathrm{P}=625 \mathrm{lb} / \mathrm{hr}$; (b) raffinate produced: $\mathrm{R}=3,281 \mathrm{lb} / \mathrm{hr}$
7. (a) $\mathrm{mol} / \mathrm{hr} \mathrm{C}_{4} \mathrm{H}_{6}=37.5$ and $\mathrm{F}=50.5 \mathrm{~mol} / \mathrm{hr}$; (b) 0.65
8. (a) $960 \mathrm{~kg} / \mathrm{hr}$; (b) $3659 \mathrm{~kg} / \mathrm{hr}$
9. (a) $1570 \mathrm{~kg} / \mathrm{hr}$; (b) $243 \mathrm{~kg} / \mathrm{hr}$
10. (a) 890 recycled and 3.2 purged; (b) 9.2% conversion (errors can be caused by loss of significant figures)
11. (a) $1.49 \mathrm{~mol} / \mathrm{hr}$; (b) $\mathrm{Cl}_{2}: 0.658 ; \mathrm{C}_{2} \mathrm{H}_{4}: 0.338 ; \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}: 0.0033$.

Dr.Ali H.Abbar

Chapter Three
Gases, Vapors, Liquids, and Solids

: Property is meaning any measurable characteristic of a substance, such as pressure, volume, or temperature, or a characteristic that can be calculated or deduced, such as internal energy.

State and Equilibrium A system will possess a unique set of properties, such as temperature, pressure, density, and so on, at a given time, and thus is said to be in a particular state. A change in the state of the system results in a change in at least one of its properties.

By equilibrium we mean a state in which there is no tendency toward spontaneous change. When a system is in equilibrium with another system, or the surroundings, it will not change its state unless the other system, or the surroundings, also changes.
: A phase is defined as a completely homogeneous and uniform state of matter. Liquid water would be a phase; ice would be another phase. Two immiscible liquids in the same container, such as mercury and water, would represent two different phases because the liquids have different properties.

3.1 Ideal Gas Law Calculations

The Ideal Gas Law

Under conditions such that the average distance between the molecules in a substance is great enough to neglect the effect of the intermolecular forces and the volume of the molecules themselves, a gas can be termed an ideal gas. More properly, an ideal gas is an imaginary gas that obeys exactly the following relationship

$$
\begin{equation*}
\mathrm{pV}=\mathrm{nRT} \tag{1}
\end{equation*}
$$

Where $p=$ absolute pressure of the gas $\quad V=$ total volume occupied by the gas $n=$
number of moles of the gas
$\mathrm{R}=$ ideal gas constant in appropriate units
$\mathrm{T}=$ absolute temperature of the gas Sometimes
the ideal gas law is written as

$$
\stackrel{\wedge}{ }{ }^{\wedge} \mathrm{V}=\mathrm{RT}
$$

\wedge
Where V is the specific volume (volume per mole or mass) of the gas.

Table 1 Common Standard Conditions for the Ideal Gas

System	T	P	\wedge V
SI	273.15 K	101.325 kPa	$22.415 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{mol}$
Universal scientific	$0.0^{\circ} \mathrm{C}$	760 mm Hg	$22.415 \mathrm{liters} / \mathrm{g} \mathrm{mol}$
Natural gas industry	$60.0^{\circ} \mathrm{F}$ $\left(15.0^{\circ} \mathrm{C}\right)$	14.696 psia $(101.325$ $\mathrm{kPa})$	$379.4 \mathrm{ft}^{3} / \mathrm{lb} \mathrm{mol}$
American engineering	$32^{\circ} \mathrm{F}$	1 atm	$359.05 \mathrm{ft}^{3} / \mathrm{lb} \mathrm{mol}$

$40 \mathrm{~kg} \mathrm{CO}_{2}$	1 kg mol CO	
2	$22.42 \mathrm{~m}^{3} \mathrm{CO}_{2}$	
	$44 \mathrm{~kg} \mathrm{CO}_{2}$	1 kg mol CO
2		

Chemical Engineering Principles-I
Dr.Ali H.Abbar

Example 1

Solution

$$
\begin{aligned}
\text { Basis: } & 40 \mathrm{~kg} \text { of } \mathrm{CO}_{2} \\
& =20.4 \mathrm{~m}^{3} \mathrm{CO}_{2} \text { atS.C. }
\end{aligned}
$$

Example 2

Find the value for the universal gas constant R for the following combinations of units: For 1 g mol of ideal gas when the pressure is in atm, the volume in cm^{3}, and the temperature in K .

Solution

At standard conditions we will use the approximate values

$$
\begin{aligned}
& p=1 \mathrm{~atm} \\
& \vec{V}=22,415 \mathrm{~cm}^{3} / \mathrm{g} \text { mol } \\
& T=273.15 \mathrm{~K} \\
& \left.R=\frac{p \hat{V}}{T}=\frac{1 \mathrm{~atm}}{273.15 \mathrm{~K}} \right\rvert\, 22,415 \mathrm{~cm}^{3} \\
& \hline \mathrm{~g} \mathrm{~mol}
\end{aligned}=82.06 \frac{\left(\mathrm{~cm}^{3}\right)(\mathrm{atm})}{(\mathrm{K})(\mathrm{g} \mathrm{~mol})} \quad . \quad \begin{aligned}
&
\end{aligned}
$$

In many processes going from an initial state to a final state, you can use the ratio of ideal gas law in the respective states and eliminate R as follows (the subscript 1 designates the initial state, and the subscript 2 designates the final state)

$$
\frac{p_{1} V_{1}}{p_{2} V_{2}}=\frac{n_{1} R T_{1}}{n_{2} R T_{2}}
$$

or

$$
\begin{equation*}
\left(\frac{p_{1}}{p_{2}}\right)\left(\frac{V_{1}}{V_{2}}\right)=\left(\frac{n_{1}}{n_{2}}\right)\left(\frac{T_{1}}{T_{2}}\right) \tag{2}
\end{equation*}
$$

Example 3

Calculate the volume occupied by 88 lb of CO_{2} at a pressure of 32.2 ft of water and at $15^{\circ} \mathrm{C}$ Solution

The final volume can be calculated via Equation 13.2 in which both R and $\mathrm{n}_{1} / \mathrm{n}_{2}$ cancel out:

Chemical Engineering Principles-I
Dr.Ali H.Abbar

$$
V_{2}=V_{1}\left(\frac{p_{1}}{p_{2}}\right)\left(\frac{T_{2}}{T_{1}}\right)
$$

Assume that the pressure is absolute pressure.

$$
\begin{aligned}
& \frac{\text { AtS.C. (state })}{p=3.3 .91 \mathrm{ftH} \mathrm{H}_{2} \mathrm{O}} \\
& T=273 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& \text { At state } 2 \\
& \hline p=32.2 \mathrm{ft} \mathrm{H}_{2} \mathrm{O} \\
& T=273+15=288 \mathrm{~K}
\end{aligned}
$$

Basis: 88 ib of CO_{2}

Another solution

The same results can be obtained by using Eq. 1

$$
R=\frac{p^{V}}{T}
$$

At S.C.,

$$
\begin{aligned}
& p=33.91 \mathrm{ft} \mathrm{H}_{2} \mathrm{O} \quad V=359 \mathrm{ft}^{3} / \mathrm{lb} \mathrm{~mol} \quad T=273 \mathrm{~K} \\
& R=\begin{array}{l|l}
33.91 & 359 \\
\hline & 27.3
\end{array}=44.59 \quad \begin{array}{c}
(\mathrm{ft} \mathrm{H} \mathrm{O})\left(\mathrm{ft}{ }^{3}\right) \\
(\mathrm{fb} \mathrm{~mol})(\mathrm{K})
\end{array} \\
& \text { Basis: } 88 \text { lt of } \mathrm{CO}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =798 \mathrm{ft}^{3} \mathrm{CO}_{2} \text { at } 32.2 \mathrm{fi} \mathrm{H}_{2} \mathrm{O} \text { and } 15^{\circ} \mathrm{C}
\end{aligned}
$$

The Gas Density

The density of a gas is defined as the mass per unit volume and can be expressed in kilograms per cubic meter, pounds per cubic foot, grams per liter, or other units
Example 4
What is the density of N_{2} at $27^{\circ} \mathrm{C}$ and 100 kPa in SI units?

Solution

$$
\text { Basis: } 1 \mathrm{~m}^{3} \text { of } \mathrm{N}_{2} \text { al } 27^{\circ} \mathrm{C}^{\prime} \text { and loo hra }
$$

$1 \mathrm{~m}^{3}$

The Gas Specific Gravity

The specific gravity of a gas is usually defined as the ratio of the density of the gas at a desired temperature and pressure to that of air (or any specified reference gas) at a certain temperature and pressure.

Example 5

What is the specific gravity of N_{2} at $80^{\circ} \mathrm{F}$ and 745 mm Hg compared to air at $80^{\circ} \mathrm{F}$ and 745 mm Hg ?

Solution

Basis: $1 \mathrm{ft}^{3}$ of air at $80^{\circ} \mathrm{F}$ and 745 mm Hg

I	492	745		29
	540	760	359	

Basis: Ift of N_{2} at $80^{\circ} \mathrm{F}$ and 745 mm Ig

1	492	745		28
	540	760	359	

$$
(\text { sp. gr. })_{N_{2}}=\frac{0.0697}{0.0721}=0.967 \frac{1 \mathrm{lb} \mathrm{~N}_{2} / \mathrm{ft}^{3} \text { at } 80^{\circ} \mathrm{F}, 745 \mathrm{~mm} \mathrm{Hg}}{\mathrm{Ib} \text { air } / \mathrm{ft}^{3} \text { air at } 80^{\circ} \mathrm{F}, 745 \mathrm{~mm} \mathrm{Hg}}
$$

Note: for gases at the same temperature and pressure, the specific gravity is just the ratio of the respective molecular weights. Let A be one gas and B be another.

$$
p \hat{v}=R T \quad \text { or } \quad p \frac{1}{\rho}=R T
$$

Ideal Gas Mixtures and Partial Pressure

The partial pressure of gas; i defined by Dalton, p_{i}, namely the pressure that would be exerted by a single component in a gaseous mixture if it existed by itself in the same volume as occupied by the mixture and at the same temperature of the mixture is

$$
\begin{equation*}
P_{i} V_{\text {tolat }}=n_{i} R T_{\text {total }} \tag{4}
\end{equation*}
$$

Where p_{i} is the partial pressure of component i. If you divide Eq. (4) by Eq. (1), you find that
of

Where y_{i} is the mole fraction of component i. Can you show that Dalton's law of the summation of partial pressures is true using Eq. 13.5?

$$
\begin{equation*}
r_{1}+r_{2}+\ldots+r_{n}=r_{1} \tag{6}
\end{equation*}
$$

Although you cannot measure the partial pressure directly with an instrument, you can calculate the value from Eqs. 5 and/or 6 .

Example 6

A flue gas analyzes $14.0 \% \mathrm{CO}_{2}, 6.0 \% \mathrm{O}_{2}$, and $80.0 \% \mathrm{~N}_{2}$. It is at $400^{\circ} \mathrm{F}$ and 765.0 mm Hg pressure. Calculate the partial pressure of each component.

Solution

Use Eq, (13.5) $\quad p_{i}=p_{t} y_{i}$
Basis: 1.00 kg (or lb) mol flue gas

Component	kg (or lb) mol	$\mathrm{p}(\mathrm{mm} \mathrm{Hg})$
CO_{2}	0.140	107.1
O_{2}	0.060	45.9
$\mathrm{~N}_{2}$	0.800	612.0
Total	1.000	765.0

On the basis of 1.00 mole of flue gas, the mole fraction y of each component, when multiplied by the total pressure, gives the partial pressure of that component.

Real Gas Relationships

: We have said that at room temperature and pressure many gases can be assumed to act as ideal gases.
: However, for some gases under normal conditions, and for most gases under conditions of high pressure, values of the gas properties that you might obtain using the ideal gas law would be at wide variance with the experimental evidence. . You might wonder exactly how the behavior of real gases compares with that calculated from the ideal gas laws.
\wedge
: In Fig. 3.2 you can see how the ($\mathrm{p} V$)product of several gases deviates from that predicted by the ideal gas laws as the pressure increases substantially. Thus it is clear that we need some way of computing the p-V-T properties of a gas that is not ideal, i.e. the real gas.

Figure 1 Deviation of real gases from the ideal gas law at high pressures.

Three methods of getting or predicting real gas properties in lieu of having experimental data:

1. Compressibility charts
2. Equations of state
3. Estimated properties

Critical State, Reduced Parameters, and Compressibility

- The critical state for the gas-liquid transition is the set of physical conditions at which the density and other properties of the liquid and vapor become identical.
- The law of corresponding states expresses the idea that in the critical state all substances should behave alike.
- Refer to Figure 2 in which the states of water are illustrated. As the temperature increases, the density of the liquid and vapor approach each other until finally at $374.14{ }^{\circ} \mathrm{C}$, the values are the same.

Figure 2 The regions of existence of solid, liquid, gaseous, and supercritical water. At the triple point solid, liquid, and gas are all in equilibrium.
${ }^{\mathrm{TM}}$ A supercritical fluid, that is, a compound in a state above the critical point, combines some of the properties of both gases and liquids.

TM
Another set of terms with which you should immediately become familiar are the reduced parameters. These are corrected, or normalized, conditions of temperature, pressure, and volume and are expressed mathematically as

$$
\begin{aligned}
T_{r} & =\frac{T}{T_{c}} \\
p_{r} & =\frac{p}{p_{c}} \\
V_{r} & =\frac{V}{V_{c}}
\end{aligned}
$$

Compressibility Factor (z)

One common way is to modify the ideal gas law by inserting an adjustable coefficient z , the compressibility factor, a factor that compensates for the nonideality of the gas. Thus, the ideal gas law becomes a real gas law, a generalized equation of state.

$$
\begin{equation*}
\mathrm{p} V=\mathrm{znRT} \tag{7}
\end{equation*}
$$

${ }^{\mathrm{TM}}$ Figure 3 shows the generalized compressibility charts or $\underline{\mathrm{z}}$ - factor chart prepared by Nelson and Obert. These charts are based on 30 gases.

Figure 3 (e) is a unique chart that, by having several parameters plotted simultaneously on it, helps you avoid trialanderror solutions or graphical solutions of real gas problems. One of these helpful parameters is the ideal reduced volume defined as

$$
V_{\mathrm{r}_{\mathrm{i}}}=\frac{\hat{V}}{\hat{V}_{\mathrm{c}_{\mathrm{i}}}}
$$

Chemical Engineering Principles-I
$V_{c_{i}}$ the ideal critical volume (not the experimental value of the critical volume), or

$$
\hat{v}_{\mathrm{c}_{\mathrm{i}}}=\frac{R T_{\mathrm{c}}}{P_{\mathrm{c}}}
$$

Both $V_{\mathrm{ri}_{\mathrm{i}}}$ and $\hat{V}_{\mathrm{c}_{\mathrm{i}}}$ are easy to calculate since T_{c} and p_{c} are presumed known.

Figure 3(a) Generalized Compressibility Chart, Very Low Reduced Pressure.

Figure 3(b) Generalized Compressibility Chart, Low Pressure

Figure 3(c) Generalized Compressibility Chart, Medium Pressure.

Figure 3(d) Generalized Compressibility Chart, High Pressure.

Figure 3 (e) Generalized Compressibility Chart, with Special Scales.

Note

The value $\underline{z=1}$ represents ideality, and the value $\underline{z=0.27}$ is the compressibility factor at the critical point.
Example 7
In spreading liquid ammonia fertilizer, the charges for the amount of NH_{3} are based on the time involved plus the pounds of NH_{3} injected into the soil. After the liquid has been spread, there is still some ammonia left in the source tank (volume $=120 \mathrm{ft}^{3}$), but in the form of a gas. Suppose that your weight tally, which is obtained by difference, shows a net weight of 125 lb of NH_{3} left in the tank as a gas at 292 psig. Because the tank is sitting in the sun, the temperature in the tank is $125^{\circ} \mathrm{F}$. Your boss complains that his calculations show that the specific volume of the gas is $1.20 \mathrm{ft}^{3} / \mathrm{lb}$ and hence that there are only 100 lb of NH_{3} in the tank. Could he be correct? See Figure E 3.7.

Solution

Apparently, your boss used the ideal gas law in getting his figure of $1.20 \mathrm{ft}^{3} / \mathrm{lb}$ of NH_{3} gas:
Chemical Engineering Principles-I

$$
\begin{array}{r}
R=10.73 \frac{(\mathrm{psia})\left(\mathrm{ft}^{3}\right)}{(\mathrm{Ib} \mathrm{~mol})\left({ }^{\circ} \mathrm{R}\right)} \quad p=292+14.7=306.7 \mathrm{psiat} \\
T=125^{\circ} \mathrm{F}+460=585^{\circ} \mathrm{R} \quad n=\frac{1 \mathrm{lb}}{17 \mathrm{lb} / \mathrm{ll} \mathrm{~mol}} \\
\hat{V}=\frac{R T}{r}=\frac{1^{\frac{1}{7}(10.73)(585)}}{306.7}=1.20 \mathrm{l} \mathrm{H}^{\prime} / \mathrm{ll}
\end{array}
$$

However, he should have used the compressibility factor, because NH_{3} does not behave as an ideal gas under the observed conditions of temperature and pressure. Let us again compute the mass of gas in the tank this time using

$$
p V=z n R T
$$

From Appendix D:

$$
\begin{gathered}
T_{\mathrm{c}}=405.5 K \simeq 729.9 R \\
p_{\mathrm{c}}=111.3 \mathrm{~atm} \simeq 16.36 \mathrm{psia}
\end{gathered}
$$

Then, since z is a function of T_{r} and p_{r},

$$
\begin{aligned}
& T_{r}=\frac{T}{T_{\mathrm{c}}}=\frac{585^{\circ} \mathrm{R}}{729.9^{\circ} \mathrm{R}}=0.801 \\
& p_{\mathrm{r}}=\frac{p}{p_{\mathrm{c}}}=\frac{300.7 \mathrm{psia}}{1636 p \mathrm{siai}}=0.187
\end{aligned}
$$

From the Nelson and Obert chart, Fig. 13.3 (b), you can read $\mathrm{z}=0.855$. Now V can be calculated as

$$
\begin{aligned}
& \hat{V}=\frac{1.20 \mathrm{ft}^{3} \text { ideal }}{\mathrm{It}} \left\lvert\, \frac{0.855}{1}=1.03 \mathrm{fi}^{\prime} / \mathrm{Ib} \mathrm{NII}\right., \\
& \begin{array}{c|l}
1 \mathrm{IH} \mathrm{NH}_{3} & 120 \mathrm{Ht}^{3} \\
\hline 1.03 \mathrm{ft}^{3} &
\end{array}
\end{aligned}
$$

Note : Certainly 117 lb is a more realistic figure than 100 lb , and it is easily possible to be in error by 8 lb if the residual weight of NH_{3} in the tank is determined by difference. As a matter of interest you might look up the specific volume of \wedge
NH_{3} at the conditions in the tank in a handbook. You would find that $\mathrm{V}=0.973 \mathrm{ft}^{3} / \mathrm{lb}$, and hence the compressibility factor calculation yielded a volume with an error of only about 4%.

Example 13.8

Liquid oxygen is used in the steel industry, in the chemical industry, in hospitals, as rocket fuel, and for wastewater treatment as well as many other applications. In a hospital a tank of $0.0284-\mathrm{m}^{3}$ volume is filled with 3.500 kg of liquid O_{2} that vaporized at $-25^{\circ} \mathrm{C}$. Will the pressure in the tank exceed the safety limit of the tank $\left(10^{4} \mathrm{kPa}\right)$?

Solution

Basis: $3.500 \mathrm{~kg} \mathrm{O}_{2}$
We know from Appendix D that

$$
\begin{gathered}
T_{\mathrm{c}}=154.4 \mathrm{~K} \\
p_{\mathrm{c}}=49.7 \mathrm{~atm} \rightarrow 5,035 \mathrm{kPa} \\
\hat{V}(\text { molal volume })=\begin{array}{l|l}
0.0284 \mathrm{~m}^{3} & 32 \mathrm{~kg} \\
\hline 3.500 \mathrm{~kg} & 1 \mathrm{~kg} \mathrm{~mol}
\end{array}=0.260 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{~mol}
\end{gathered}
$$

Note that the molal volume must be used in calculating $V_{\mathrm{r}_{\mathrm{i}}}$ since $\hat{V}_{\mathrm{c}_{\mathbf{i}}}$ is a volume per mole.

$$
\hat{V}_{\mathrm{c}_{\mathrm{i}}}=\frac{R T_{\mathrm{c}}}{p_{\mathrm{c}}}=\begin{array}{l|l}
8.313\left(\mathrm{~m}^{3}\right)(\mathrm{kPa}) & 154.4 \mathrm{~K} \\
\hline(\mathrm{~kg} \mathrm{~mol})(\mathrm{K}) & 5,035 \mathrm{kPa}
\end{array}=0.255 \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \mathrm{~mol}}
$$

Then

$$
V_{\mathrm{r}_{\mathrm{i}}}=\frac{\hat{\hat{V}}}{\hat{V}_{\mathrm{c}_{\mathrm{i}}}}=\frac{0.260}{0.255}=1.02
$$

Now we know two parameters, $V_{\mathrm{r}_{\mathrm{i}}}$ and,

$$
T_{\mathrm{r}}=\frac{248 \mathrm{~K}}{154.4 \mathrm{~K}}=1.61
$$

From the Nelson and Obert chart [Fig. 3 (e)],

$$
p_{\mathrm{r}}=1.43
$$

Then

$$
\begin{aligned}
p & =p_{\mathrm{t}} \dot{p_{\mathrm{c}}} \\
& =1.43(5,035)=7200 \mathrm{kPa}
\end{aligned}
$$

The pressure of 100 atm will not be exceeded. Even at room temperature the pressure will be less than $10^{4} \mathrm{kPa}$.

13.2.2 Equations of State

${ }^{\mathrm{TM}}$ Equations of state relate the p-V-T properties of a pure substance (or mixtures) by theoretical or empirical relations.
${ }^{\text {TM }}$ The simplest example of an equation of state is the ideal gas law itself. Table 13.2 lists a few of the commonly used equations of state (from among the hundreds that have been proposed) that involve two or more coefficients.

TABLE 3.2 Equations of State (for 1 Mole)*

Van der Waals:

$$
\begin{aligned}
& \left(p+\frac{a}{\hat{V}^{2}}\right)(\hat{V}-b)=R T \\
& a=\left(\frac{27}{64}\right) \frac{R^{2} T_{\epsilon}^{2}}{P_{c}} \\
& b=\left(\frac{1}{8}\right) \frac{R T_{c}}{P_{c}}
\end{aligned}
$$

Dieterici:

$$
p=\frac{R T}{\hat{V}-b} e^{-a / \dot{V} R T}
$$

Berthelot:

$$
p=\frac{R T}{\hat{V}-b}-\frac{a}{T \hat{V}^{2}}
$$

Redlich-Kwong:

$$
\begin{aligned}
& {\left[p+\frac{a}{T^{1 / 2} \hat{V}(\hat{V}+b)}\right](\hat{V}-b)=R T} \\
& a=0.4278 \frac{R^{2} T_{c}^{2.5}}{p_{c}} \\
& b=0.0867 \frac{R T_{c}}{p_{c}}
\end{aligned}
$$

Kammerlingh-Onnes:

$$
p \hat{V}=R T\left(1+\frac{B}{\hat{V}}+\frac{C}{\hat{V}^{2}}+\cdots\right)
$$

Holborn:

$$
p \hat{V}=R T\left(1+B^{\prime} p+C^{\prime} p^{2}+\cdots\right)
$$

Beattie-Bridgeman:

$$
\begin{aligned}
& p \hat{V}=R T+\frac{\beta}{\hat{V}}+\frac{\gamma}{\hat{V}^{2}}+\frac{\delta}{\hat{V}^{3}} \\
& \beta=R T B_{0}-A_{0}-\frac{R c}{T^{2}} \\
& \gamma=-R T B_{0} b+a A_{0}-\frac{R B_{0} c}{T^{2}} \\
& \delta=\frac{R B_{0} b c}{T^{2}}
\end{aligned}
$$

Benedict-Webb-Rubin:

$p \hat{V}=R T+\frac{\beta}{\hat{V}}+\frac{\sigma}{\hat{V}^{2}}+\frac{\eta}{\hat{V}^{4}}+\frac{w}{\hat{V}^{3}}$
$\beta=R T B_{0}-A_{0}-\frac{C_{0}}{T^{2}}$
$\sigma=b R T-a+\frac{c}{T^{2}} \operatorname{cxp}\left(\frac{\gamma}{\hat{V}^{2}}\right)$
$\eta=c y \exp \left(-\frac{\gamma}{\hat{V}^{2}}\right)$
$w=a \alpha$

Peng-Robinson:

$p=\frac{R T}{\hat{V}-b}-\frac{a \alpha}{\hat{V}(\hat{V}+b)+b(\hat{V}-b)}$
$a=0.45724\left(\frac{R^{2} T_{c}^{2}}{p_{c}}\right)$
$b=0.07780\left(\frac{R T_{c}}{p_{c}}\right)$
$\alpha=\left[1+\kappa\left(1-T_{r}^{1 / 2}\right)\right]^{2}$
$\kappa=0.37464+1.54226 \omega-0.26992 \omega^{2}$
$\omega=$ acentric factor (see p. 275)

- Van der Waals equation can easily be solved explicitly for (p) as follows:

$$
p=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}
$$

However, if you want to solve for $\mathrm{V}($ or n$)$, you can see that the equation becomes cubic in $\mathrm{V}(\mathrm{or} \mathrm{n})$:

$$
f(V)=V^{3}-\left(n b+\frac{n R T}{p}\right) V^{2}+\frac{n^{2} a}{p} V-\frac{n^{3} a b}{p}=0
$$

And can have multiple roots. We want a positive real root. Computer programs can solve nonlinear equations and can be used to solve for V if you have a reasonable initial guess for V , say from the ideal gas law.

Example 13.9

A cylinder $0.150 \mathrm{~m}^{3}$ in volume containing 22.7 kg of propane $\mathrm{C}_{3} \mathrm{H}_{8}$ stands in the hot sun. A pressure gauge shows that the pressure is 4790 kPa gauge. What is the temperature of the propane in the cylinder? Use van der Waals equation.

Basis: 22.7 kg of propathe

The van der Watals comstants obtained from any suitable hamdoook

$$
\begin{gathered}
a=9.24 \times 10^{6} \mathrm{alm}\left(\frac{\mathrm{~cm}}{\mathrm{gmol}}\right)^{2} \\
1=90.7 \frac{\mathrm{~cm}}{\mathrm{gmol}} \\
\rho+\left(\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R^{\prime} I
\end{gathered}
$$

All the additional information you meed is as follows:

$$
\begin{aligned}
& R \text { in the proper units is }=\frac{82.06\left(\mathrm{~cm}^{3}\right)(a t m)}{(g \text { mol })(K)} \\
& n=\frac{22.7}{44 \mathrm{~kg} / \mathrm{kg} \mathrm{~mol}}=0.516 \mathrm{~kg} \text { mol propane } \\
& {\left[48.3+\frac{\left(0.516 \times 10^{3}\right)^{2}\left(9.24 \times 10^{6}\right)}{\left(0.150 \times 10^{6}\right)^{2}}\right] 10.150 \times 10^{6}} \\
& -\left(0.516 \times 10^{3}\right)(90.7) \mid=\left(0.516 \times 10^{3}\right)(82.06)\left(T_{\mathrm{K}}\right) \\
& T=384 \mathrm{~K}
\end{aligned}
$$

3.2.3 Gaseous Mixtures

In Kay's method, pseudocritical values for mixtures of gases are calculated on the assumption that each component in the mixture contributes to the pseudocritical value in the same proportion as the number of moles of that component. Thus the pseudocritical values are computed as follows:

$$
\begin{align*}
& p_{\mathrm{c}}^{\prime}=p_{\mathrm{c}_{\mathrm{A}}} y_{\mathrm{A}}+p_{\mathrm{c}_{\mathrm{B}}} y_{\mathrm{B}}+\cdots \tag{x}\\
& T_{\mathrm{c}}^{\prime}=T_{\mathrm{c}_{\mathrm{A}}} y_{\mathrm{A}}+T_{\mathrm{c}_{\mathrm{B}}} y_{\mathrm{B}}+\cdots \tag{83}
\end{align*}
$$

Where $\mathrm{p}^{\prime}{ }_{\mathrm{c}}=$ pseudocritical pressure and $\mathrm{T}_{\mathrm{c}}{ }^{\prime}=$ pseudocritical temperature. (It has also been found convenient in some problems to calculate similarly a weighted pseudo-ideal-critical volume V^{ci}.)

Then the respective pseudo-reduced values are

$$
\begin{aligned}
& p_{r}^{\prime}=\frac{p}{p_{c}^{\prime}} \\
& T_{r}^{\prime}=\frac{T}{T_{c}^{\prime}}
\end{aligned}
$$

Chemical Engineering Principles-I

Dr.Ali H.Abbar

Example 10
A gaseous mixture has the following composition (in mole percent):
Methane, $\mathrm{CH}_{4} \quad 20$
Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4} \quad 30$ Nitrogen, $\mathrm{N}_{2} \quad 50$ at 90 atm pressure and $100^{\circ} \mathrm{C}$. Compare
the volume per mole as computed by the methods of:
(a) the perfect gas law
(b) the pseudoreduced technique (Kay's method)

Solution

Basis: 1 g mol of gas mixture
Additional data needed are:

Component	$T_{\mathrm{c}}(\mathrm{K})$	$p_{\mathrm{c}}(\mathrm{atm})$
CH_{4}	191	45.8
$\mathrm{C}_{2} \mathrm{H}_{4}$	283	50.5
$\mathrm{~N}_{2}$	126	33.5
	$R=82.06 \frac{\left(\mathrm{~cm}^{3}\right)(\mathrm{atm})}{(\mathrm{g} \mathrm{mol})(\mathrm{K})}$	

(a) Perfect gas law:

$$
\hat{V}=\frac{R T}{p}=\frac{1(82.06)(373)}{90}=340 \mathrm{~cm}^{3} \text { at } 90 \text { atm and } 373 \mathrm{~K}
$$

(b) According to Kay's method, we first calculate the pseudocritical values for the mixture

$$
\begin{aligned}
p_{\mathrm{c}}^{\prime} & =p_{\mathrm{c}_{\Lambda}} y_{\Lambda}+p_{\mathrm{c}_{\mathrm{B}}} y_{\mathrm{B}}+p_{\mathrm{c}_{\mathrm{C}}} y_{\mathrm{C}}=(45.8)(0.2)+(50.5)(0.3)+(33.5)(0.5) \\
& =41.2 \mathrm{~atm} \\
T_{\mathrm{c}}^{\prime} & =T_{\mathrm{c}_{\mathrm{A}}} y_{\mathrm{A}}+T_{\mathrm{c}_{B}} y_{\mathrm{B}}+T_{\mathrm{c}_{\mathrm{C}}} y_{\mathrm{C}}=(191)(0.2)+(283)(0.3)+(126)(0.5) \\
& =186 \mathrm{~K}
\end{aligned}
$$

Then we calculate the pseudo-reduced values for the mixture

$$
p_{\mathrm{r}}^{\prime}=\frac{p}{p_{\mathrm{c}}^{\prime}}=\frac{90}{41.2}=2.18, \quad T_{\mathrm{r}}^{\prime}=\frac{T}{T_{\mathrm{c}}^{\prime}}=\frac{373}{186}=2.01
$$

With the aid of these two parameters we can find from Figudere 3.89 d 3 bat $z=0.965$. Thus

$$
\hat{V}=\frac{z R T}{n}=\frac{0.965(1)(82.06)(373)}{90}=328 \mathrm{~cm}^{3} \text { at } 90 \mathrm{~atm} \text { and } 373 \mathrm{~K}
$$

Note

In instances in which the temperature or pressure of a gas mixture is unknown, to avoid a trial - and - error solution using the generalized compressibility charts, you can compute the pseudocritical ideal volume and a pseudoreduced ideal reduced volume $\mathrm{V}_{\text {ri }}$ thus

$$
\hat{V}_{c_{i}^{\prime}}^{\prime}=\frac{R I_{c}^{\prime}}{P_{c}^{\prime}} \quad \text { alld } \quad \hat{V}_{1}^{\prime}=\frac{\hat{V}^{\prime}}{V_{c_{i}}^{\prime}}
$$

$\hat{V}_{r_{\mathrm{i}}}^{\prime}$ can be used in lien of p_{r}^{\prime} or $T_{\mathrm{r}}^{\prime \prime}$ in the compressibility charts.
Vapor Pressure and Liquids
${ }^{\text {: }}$ The terms vapor and gas are used very loosely. From now on, the word vapor will be reserved to describe a gas below its critical point in a process in which the phase change is of primary interest, while the word gas or noncondensable gas will be used to describe a gas above the critical point or a gas in a process in which it cannot condense.
: If the vapor and liquid of a pure component are in equilibrium, then the equilibrium pressure is called the vapor pressure (see Figure 13.4).

Figure 13.4 Vapor-pressure curve for water.

TM Any substance has an infinite number of boiling points, but by custom we say the "normal" boiling point is the temperature at which boiling takes place under a pressure of $1 \mathrm{~atm}(101.3 \mathrm{kPa}, 760 \mathrm{~mm} \mathrm{Hg})$. (see Figure 13.5)
${ }^{\text {TM }}$ When the solid passes directly into the vapor phase without first melting to become a liquid (line $\mathrm{J}-\mathrm{K}$ as opposed
to line L-M-N-O in Figure 13.4) it is said to sublime.

saturated liquid in equilibrium. The mass fraction of vapor is known as the quality (x).

Change of Vapor Pressure with Temperature

You can see from Figure 13.4 that the function of p^{*} versus T is not a linear Function (except as an approximation over a very small temperature range).

We will use the Antoine equation - it has sufficient accuracy for our needs:

$$
\ln \mathrm{p}=\mathrm{A}-\xrightarrow{\mathrm{B}}
$$

$\mathrm{C}+\mathrm{T}$

Where A, B, C = constants different for each substance $\mathrm{T}=$ temperature, K

Example 11

Calculate the vapor pressure of benzene at $50^{\circ} \mathrm{C}$ using the Antoine Equation. Also estimate the normal boiling point of benzene (the vapor pressure at 1 atm).

Solution

$$
\text { Antoine Equation } \quad \ln \left(\mathrm{p}^{*}\right)=\mathrm{A}-\frac{\mathrm{B}}{\mathrm{C}+\mathrm{T}}
$$

From Appendix G in the text the coefficients are

$$
\begin{array}{lll}
\text { Benzene: } & \mathrm{A}=15.9008 & \mathrm{~T}=\mathrm{K} \\
& \mathrm{~B}=2788.51 & \mathrm{p}^{*}=\mathrm{mmHg} \\
& \mathrm{C}=-52.36 &
\end{array}
$$

a. Vapor Pressure of benzene at $50^{\circ} \mathrm{C}$

$$
\ln \left(\mathrm{p}^{*}\right)=15.9008-\frac{2788.51}{-52.36+(50+273)}
$$

$$
\mathrm{p}^{*}=270 \mathrm{mmHg} \text { abs }
$$

b. At the boiling point the vapor pressure is 1 atm (760 mmHg abs.)

$$
\ln (760)=15.9008-\frac{2788.51}{-52.36+\mathrm{T}}
$$

Solving, $T=353.3 \mathrm{~K}$

Liquid Properties

Often making density a linear function of temperature that is independent of pressure provides sufficiently accurate predictions

$$
\begin{equation*}
\rho=\rho_{0}-\beta\left(T-T_{0}\right) \tag{3}
\end{equation*}
$$

Where ρ_{o} and β are constants and ρ is the density of the liquid. Most liquids can be considered to be incompressible, that is, their density is independent of pressure.
For compounds with like molecular structures, such as hydrocarbons of similar molecular weight, called ideal liquids, the density of a liquid mixture can be approximated by assuming that the weighted specific volumes are additive:

$$
\begin{equation*}
\hat{V}_{\text {average }}=x_{1} \hat{V}_{1}+x_{2} \hat{V}_{2}+\cdots x_{n} \hat{V}_{n}=\sum_{i=1}^{n} x_{i} \hat{V}_{i} \tag{11}
\end{equation*}
$$

Where n is the number of components in the mixture. For nonideal liquids or solids dissolved in liquids, experimental data or estimation techniques described in many of the references, as the specific volumes are not additive.

Saturation

Figure below shows that the volume of the air plus the water vapor increases until the air is saturated with water vapor, after which stage the volume remains constant.

Evaporation of water at constant pressure and temperature of $65^{\circ} \mathrm{C}$

Assuming that the ideal gas law applies to both air and water vapor with excellent precision, we can say that the following relations hold at saturation:

$$
\frac{p_{\text {air }} V}{\rho_{H_{2} \mathrm{O}} V}=\frac{n_{\mathrm{air}} R T}{n_{H_{2} \mathrm{O}} R T}
$$

Or

$$
\frac{p_{\mathrm{air}}}{p_{\mathrm{H}_{2} \mathrm{O}}}=-\frac{n_{\mathrm{air}}}{n_{\mathrm{H}_{2} \mathrm{O}}}=\frac{p_{\mathrm{air}}}{p_{\text {totat }}-p_{\mathrm{air}}}
$$

Example 12

What is the minimum number of cubic meters of dry air al $20^{\circ} \mathrm{C}$ and 100 kpa necessary to evaporate 6.0 kg of ethyl alcohol if the total pressure remains constant al 100 kpa and the temperature remains $20^{\circ} \mathrm{C}$? Assume that the air is blown through the alcohol to evaporate it in such a way that the exit pressure of the air alcohol mixture is at 100 kPa .
(Given: p^{*} alcohol at $20^{\circ} \mathrm{C}=5.93 \mathrm{kPa}$, mol. wt. ethyl alcohol $=46.07$).

Solution

See Figure E13.12. Assume that the process is isothermal.

Figure E13.12

Basis: 6 kg of alcohol

$$
\begin{gathered}
\frac{r_{\text {atconhol }}^{*}}{r_{\text {aill }}^{\prime}}=\frac{n_{\text {atrohal }}}{n_{\text {aill }}} \\
p_{\text {air }}=p_{\text {total }}-p_{\text {alcohol }}^{*}=(100-5.93) \mathrm{kPa}=94.07 \mathrm{kPa}
\end{gathered}
$$

6.0 kg alcohol	1 kg mol alcohol	94.07 kg mol air
	46.07 kg alcohol	5.93 kg mol alcohol

$$
V_{\text {air }}=\begin{array}{l|c|c}
2.07 \mathrm{~kg} \mathrm{~mol} \text { air } & 8.314(\mathrm{kPa})\left(\mathrm{m}^{3}\right) & 293 \mathrm{~K} \\
& (\mathrm{~kg} \mathrm{~mol})(\mathrm{K}) & 100 \mathrm{kPa}
\end{array}=50.3 \mathrm{~m}^{3} \text { at } 20^{\circ} \mathrm{C} \text { and } 100 \mathrm{kPa}
$$

Another way to view this problem is to say that the final volume contains

$$
\begin{aligned}
& \mathrm{V} \mathrm{~m}^{3} \text { of alcohol at } 5.93 \mathrm{kPa} \text { and } 20^{\circ} \mathrm{C} \\
& \mathrm{~V} \mathrm{~m}^{3} \text { of air at } 94.07 \mathrm{kPa} \text { and } 20^{\circ} \mathrm{C} \\
& \mathrm{~V} \mathrm{~m} \mathrm{~m}^{3} \text { of air plus alcohol at } 100 \mathrm{kPa} \text { and } 20^{\circ} \mathrm{C}
\end{aligned}
$$

Thus, the volume could be calculated from the information about the alcohol

$$
\begin{aligned}
& V_{\text {atcohol }}=\begin{array}{c|c|c}
\left(\frac{6}{46.07}\right) & 8.314 & 293 \\
\hline & & 5.93
\end{array} \\
& =\mathrm{V}_{\text {air }} \text { at } 94.07 \mathrm{kPa} \text { and } 20^{\circ} \mathrm{C} \\
& V_{\text {air }}=\begin{array}{l|l}
53.5 \mathrm{~m}^{3} & 94.07 \\
& 100
\end{array}=50.3 \mathrm{~m}^{3} \text { at } 100 \mathrm{kPa} \text { and } 20^{\circ} \mathrm{C}
\end{aligned}
$$

Vapor-Liquid Equilibria for Multicomponent Systems

In two-phase vapor-liquid mixture at equilibrium, a component in one phase is in equilibrium with the same component in the other phase. The equilibrium relationship depends on the temperature, pressure, and composition of the mixture. Figure 13.7 illustrates two cases, one at constant pressure and the other at constant temperature.

Figure 13.17 Vapor-liquid equilibrium for a binary mixture. The dashed lines show the equilibrium compositions.

Henry's law. Used primarily for a component whose mole fraction approaches zero, such as a dilute gas dissolved in as liquid:

$$
\begin{equation*}
\mathrm{p}_{\mathrm{i}}=\mathrm{H}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \tag{12}
\end{equation*}
$$

Where p_{i} is the pressure in the gas phase of the dilute component at equilibrium at some temperature, and H_{i} is the Henry's law constant. Note that in the limit where $\mathrm{x}_{\mathrm{i}} \equiv 0, \mathrm{p}_{\mathrm{i}} \equiv 0$. Values of H can be found in several handbooks. Note that

$$
y_{\mathrm{i}}=\frac{p_{\mathrm{i}}}{p_{\mathrm{tot}}}=\frac{H_{\mathrm{i}} x_{\mathrm{i}}}{p_{\mathrm{tot}}}
$$

And since Hi , is roughly independent of $\mathrm{p}_{\text {tot }}$, the higher the total pressure, the larger x_{i}.

Raoult's law. Used primarily for a component whose mole fraction approaches unity or for solutions of components quite similar in chemical nature, such as straight chain hydrocarbons. Let the subscript i denote the component, p_{i} be the partial pressure of component i in the gas phase, y_{i} be the gas-phase mole fraction, and x_{i} be the liquid-phase mole fraction. Then:

Note that in the limit where $\mathrm{x}_{\mathrm{i}} \equiv 1, \mathrm{p}_{\mathrm{i}} \equiv \mathrm{p}_{\mathrm{i}}{ }^{*}$.

$$
p_{\mathrm{i}}=p_{\mathrm{i}}^{*} x_{\mathrm{i}}
$$

Note that in the limit where $\mathrm{x}_{\mathrm{i}} \equiv 1, \mathrm{p}_{\mathrm{i}} \equiv \mathrm{p}_{\mathrm{i}}{ }^{*}$.
Equilibrium constant K_{i} is defined using Eq. (13.13) as follows by assuming that Dalton's law applies to the gas phase ($p_{i}=p_{t} y_{i}$):

$$
K_{\mathrm{i}}=\frac{y_{\mathrm{i}}}{x_{\mathrm{i}}}=\frac{p_{\mathrm{i}}^{*}}{p_{\mathrm{tot}}}
$$

Equation (14) gives reasonable estimates of K_{i} values at low pressures for components well below their critical temperatures, but yields values too large for components above their critical temperatures, at high pressures, and/or for polar compounds.

Bubble Point Temperature

Bubble point: The temperature at which a liquid just starts to vaporize (See Figure 13.4).

* To calculate the bubble point temperature (given the total pressure and liquid composition), you can write

Eq. (13.14) as $y_{i}=K_{i} x_{i}$ and you know that $\sum_{i}^{y}=1$ in the vapor phase.

$$
\begin{equation*}
1=\sum_{i=1}^{n} K_{i} X_{i} \tag{15}
\end{equation*}
$$

In which the K's are functions of solely the temperature and n is the number of components. For an ideal solution:

$$
r_{t, t}=\sum_{i=1}^{n} p_{i}^{+} x_{i}
$$

And you might use Anionie's equation for $\mathrm{p}_{\mathrm{i}}{ }^{*}$. Once the bubble point temperature is determined, the vapor composition can be calculated from

$$
y_{\mathrm{i}}=\frac{r_{\mathrm{i}}^{*} \cdot x_{\mathrm{i}}}{r_{(w)}}
$$

Dew Point Temperature

Dew Point: The temperature, at which the vapor just begins to condense at specified pressure, namely temperature values along the vapor pressure curve (See Figure 13.4).

2 To calculate the dew point temperature (given the total pressure and vapor composition), you can write Eq.
(13.14) as $x_{i}=y_{i} / K_{i}$ and you know $\sum^{X}{ }_{i}=1$ in the liquid phase. Consequently, you want to solve the equation Chemical Engineering Principles-I

Dr.Ali H.Abbar

$$
\begin{equation*}
I=\sum_{i=1}^{n} \frac{y_{i}}{K_{i}} \tag{18}
\end{equation*}
$$

In which the K's are function of temperature as explained for the bubble point temperature calculation. For an ideal solution,

$$
\begin{equation*}
\mathrm{I}=p_{\mathrm{tot}} \sum_{i=1}^{n} \frac{y_{\mathrm{i}}}{p_{i}^{*}} \tag{19}
\end{equation*}
$$

Example 13

A gas containing nitrogen, benzene, and toluene is in equilibrium with 40 mole $\%$ benzene and 60 mole $\%$ toluene liquid mixtures at $100^{\circ} \mathrm{C}$ and 10 atm . Estimate the gas phase composition (mole fractions) using Raoult's law.

Antoine equation constants	A	B	C	Pressure (mm Hg) Temperature (K)
Benzene	15.9008	2788.51	-52.36	
Toluene	16.0137	3096.52	-53.67	

Solution

$$
\ln \mathrm{p}^{*}=\mathrm{A}-\frac{\mathrm{B}}{\mathrm{C}+\mathrm{T}} \Rightarrow \mathrm{p}^{*}{ }_{\mathrm{B}}=\operatorname{Exp} \square \square 15.9008-\overbrace{\square \quad-52.36+373 \square}^{2788.51} \square \square=1344.9 \mathrm{mmHg}
$$

$$
\begin{aligned}
& \text { * } \quad \square \\
& \mathrm{p}_{\mathrm{T}}=\operatorname{Exp} \square 16.0137-\xrightarrow{-\quad 3096.52 \square} \square \square=553.8 \mathrm{mmHg} \square
\end{aligned}
$$

$$
-53.67+373
$$

Raoult's law $p_{i}=p_{i}{ }^{*} x_{i}$, and $p_{i}=y_{i} p_{T}$

$$
\begin{aligned}
& \text { ув } \mathrm{p}_{\mathrm{T}}=\text { Хв } \mathrm{p}^{*} *_{\mathrm{B}} \Rightarrow \mathrm{y}_{\mathrm{B}}=\frac{0.4 \times 1344.9}{(10)(760)}=0.071 \\
& y_{\mathrm{T}}=\frac{0.6 \times 553.8}{(10)(760)}=0.044, \quad \mathrm{y}_{\mathrm{N}_{2}}=1-0.071-0.044=0.885
\end{aligned}
$$

Example 14

Air and liquid water are contained at equilibrium in a closed chamber at $75^{\circ} \mathrm{C}$ and 760 mm Hg . Calculate the molar composition of the gas phase. p^{*} н2О $\left(75^{\circ} \mathrm{C}\right)=289 \mathrm{~mm} \mathrm{Hg}$

Solution

Since the gas and liquid are in equilibrium, the air must be saturated with water vapor (if it was not, more water would evaporate), so that Raoult's law may be applied:

$$
\begin{gathered}
y_{\mathrm{H}_{2} \mathrm{O}}=p_{\mathrm{H}_{2} \mathrm{O}}^{*}\left(75^{\circ} \mathrm{C}\right) / P \\
y_{\mathrm{H}_{2} \mathrm{O}}=\frac{289 \mathrm{~mm} \mathrm{Hg}}{760 \mathrm{~mm} \mathrm{Hg}}=0.380 \frac{\mathrm{~mol} \mathrm{H}}{2} \mathrm{O} \\
y_{\text {dry air }}=1-y_{\mathrm{H}_{2} \mathrm{O}}=0.620 \frac{\mathrm{~mol} \text { dry air }}{\mathrm{mol}}
\end{gathered}
$$

Example 15

Use either Raoult's law or Henry's law to solve the following problems.

1. A gas containing 1.00 mole\% ethane is in contact with water at $20.0^{\circ} \mathrm{C}$ and 20.0 atm . Estimate the mole fraction of dissolved ethane.
2. An equimolar liquid mixture of benzene (B) and toluene (T) is in equilibrium with its vapor at $30.0^{\circ} \mathrm{C}$. What are the system pressure and the composition of the vapor?
(Henry's law constant for ethane in water at $20^{\circ} \mathrm{C}$ as $2.63 \times 10^{4} \mathrm{~atm} / \mathrm{mole}$ fraction)

Solution

1. Hydrocarbons normally are relatively insoluble in water, so that the solution of ethane is probably extremely dilute. Let us therefore apply Henry's law.

$$
x_{\mathrm{C}_{2} \mathrm{H}_{6}}=\frac{y_{\mathrm{C}_{2} \mathrm{H}_{6}} P}{H_{\mathrm{C}_{2} \mathrm{H}_{6}}}=\frac{(0.0100)(20.0 \mathrm{~atm})}{2.63 \times 10^{4} \mathrm{~atm} / \mathrm{mole} \text { fraction }}=7.60 \times 10^{-6} \frac{\mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}}{\mathrm{~mol}}
$$

2. Since benzene and toluene are structurally similar compounds, we may apply Raoult's law.

$$
\ln \mathrm{p}^{*}=\mathrm{A}-\frac{\mathrm{B}}{\mathrm{C}+\mathrm{T}}
$$

$$
=6.906-\frac{1211}{T+220.8} \stackrel{T=30^{\circ} \mathrm{C}}{\Longrightarrow} p_{\mathrm{B}}^{*}=119 \mathrm{~mm} \mathrm{Hg}
$$

$$
=6.9533-\frac{1343.9}{T+219.38} \stackrel{T=30^{\circ} \mathrm{C}}{\Longrightarrow} p_{\mathrm{T}}^{*}=36.7 \mathrm{~mm} \mathrm{Hg}
$$

$$
p_{\mathrm{B}}=x_{\mathrm{B}} p_{\mathrm{B}}^{*}=(0.500)(119 \mathrm{~mm} \mathrm{Hg})=59.5 \mathrm{~mm} \mathrm{Hg}
$$

$$
p_{\mathrm{T}}=x_{\mathrm{T}} p_{\mathrm{T}}^{*}=(0.500)(36.7 \mathrm{~mm} \mathrm{Hg})=18.35 \mathrm{~mm} \mathrm{Hg}
$$

$$
P=p_{\mathrm{B}}+p_{\mathrm{T}}=77.9 \mathrm{~mm} \mathrm{Hg}
$$

$$
y_{\mathrm{B}}=p_{\mathrm{B}} / P=0.764 \text { mole benzene } / \mathrm{mole}
$$

$$
y_{\mathrm{T}}=p_{\mathrm{T}} / P=0.236 \text { mole toluene } / \mathrm{mole}
$$

Gibb's phase rule

The rule can be applied only to systems in equilibrium.

$$
\begin{equation*}
\mathrm{F}=\mathrm{C}-\mathrm{P}+2 \tag{20}
\end{equation*}
$$

Where
$\mathrm{F}=$ number of degrees of freedom (i.e., the number of independent properties that have to be specified to determine all the intensive properties of each phase of the system of interest).
$\mathrm{C}=$ number of components in the system.
$\mathrm{P}=$ number of phases that can exist in the system; a phase is a homogeneous quantity of material such as a gas, a pure liquid, a solution, or a homogeneous solid.
Chemical Engineering Principles-I
Dr.Ali H.Abbar

Example 16

Calculate the number of degrees of freedom (how many additional intensive variables must be specified to fix the system) from the phase rule for the following materials at equilibrium:
(a) Pure liquid benzene.
(b) A mixture of ice and water only.
(c) A mixture of liquid benzene, benzene vapor, and helium gas.
(d) A mixture of salt and water designed to achieve a specific vapor pressure.

What variables might be specified in each case? Solution

$$
\mathrm{F}=\mathrm{C}-\mathrm{P}+2
$$

(a) $\mathrm{C}=1, \mathrm{P}=1$, hence $\mathrm{F}=1-1+2=2$. The temperature and pressure might be specified in the range in which benzene remains a liquid.
(b) $\mathrm{C}=1, \mathrm{P}=2$, hence $\mathrm{F}=1-2+2=1$. Once either the temperature or the pressure is specified, the other intensive variables are fixed.
(c) $\mathrm{C}=2, \mathrm{P}=2$, hence $\mathrm{F}=2-2+2=2$. A pair from temperature, pressure, or mole fraction can be specified.
(d) $\mathrm{C}=2, \mathrm{P}=2$, hence $\mathrm{F}=2-2+2=2$. Since a particular pressure is to be achieved, you would adjust the salt concentration and the temperature of the solution.

Note in (a) and (b) it would be unlikely that a vapor phase would not exist in practice, increasing P by 1 and reducing F by one.

Problems

1. Calculate the volume in ft^{3} of 10 lb mol of an ideal gas at $68^{\circ} \mathrm{F}$ and 30 psia .
2. A steel cylinder of volume $2 \mathrm{~m}^{3}$ contains methane gas $\left(\mathrm{CH}_{4}\right)$ at $50^{\circ} \mathrm{C}$ and 250 kPa absolute. How many kilograms of methane are in the cylinder?
3. What is the value of the ideal gas constant R to use if the pressure is to be expressed in atm, the temperature in Kelvin, the volume in cubic feet, and the quantity of material in pound moles?
4. Twenty-two kilograms per hour of CH_{4} are flowing in a gas pipeline at $30^{\circ} \mathrm{C}$ and 920 mm Hg . What is the volumetric flow rate of the CH_{4} in m^{3} per hour?
5. What is the density of a gas that has a molecular weight of $0.123 \mathrm{~kg} / \mathrm{kg} \mathrm{mol}$ at 300 K and 1000 kPa ?
6. What is the specific gravity of CH_{4} at $70^{\circ} \mathrm{F}$ and 2 atm compared to air at S.C.?
7. A gas has the following composition at $120^{\circ} \mathrm{F}$ and 13.8 psia .

Component	Mol \%
N_{2}	2
CH_{4}	79
$\mathrm{C}_{2} \mathrm{H}_{6}$	19

(a) What is the partial pressure of each component?
(b) What is the volume fraction of each component?
8. (a) If the $\mathrm{C}_{2} \mathrm{H}_{6}$ were removed from the gas in problem 7, what would be the subsequent pressure in the vessel?
(b) What would be the subsequent partial pressure of the N_{2} ?
9. What is the ideal critical volume? What is the advantage of using V_{ci} ?
10. A carbon dioxide fire extinguisher has a volume of 40 L and is to be charged to a pressure of 20 atm at a storage temperature of $20^{\circ} \mathrm{C}$. Determine the mass in kilograms of CO_{2} at 1 atm .
11. Calculate the pressure of $4 \mathrm{~g} \mathrm{~mol} \mathrm{CO}_{2}$ contained in a $6.25 \times 10^{-3} \mathrm{~m}^{3}$ fire extinguisher at $25^{\circ} \mathrm{C}$.
12. You measure that 0.00220 lb mol of a certain gas occupies a volume of $0.95 \mathrm{ft}^{3} \mathrm{at} 1 \mathrm{~atm}$ and $32^{\circ} \mathrm{F}$. If the equation of state for this gas is $\mathrm{pV}=\mathrm{nRT}(1+\mathrm{bp})$, where b is a constant, find the volume at 2 atm and $71^{\circ} \mathrm{F}$.
13. Calculate the temperature of 2 g mol of a gas using van der Waals' equation with $\mathrm{a}=1.35 * 10^{-6} \mathrm{~m}^{6}(\mathrm{~atm})\left(\mathrm{g} \mathrm{mol}{ }^{-}\right.$ $2 \begin{array}{llll}-3 & 3 & -1 & 3\end{array}$ $), \mathrm{b}=0.0322 * 10(\mathrm{~m})(\mathrm{g} \mathrm{mol})$ if the pressure is 100 kPa and the volume is 0.0515 m .
14. Calculate the pressure of 10 kg mol of ethane in a $4.86 \mathrm{~m}^{3}$ vessel at 300 K using two equations of state: (a) ideal gas and (b) Soave-Redlich-Kwong. Compare with your answer the observed value of 34.0 atm .
15. One pound mole of a mixture containing 0.400 lb mol of N_{2} and $0.600 \mathrm{lb} \mathrm{mol}_{2} \mathrm{H}_{4}$ at $50^{\circ} \mathrm{C}$ occupies a volume of $1.44 \mathrm{ft}^{3}$. What is the pressure in the vessel? Compute your answer by Kay's method.
16. Use the Antoine equation to calculate the vapor pressure of ethanol at $50^{\circ} \mathrm{C}$, and compare with the experimental value (Experimental $\left.\mathrm{p}^{*}=219.9 \mathrm{~mm} \mathrm{Hg}\right)$
17. What does the term "saturated gas" mean?
18. If a container with a volumetric ratio of air to liquid water of 5 is heated to $60^{\circ} \mathrm{C}$ and equilibrium is reached, will there still be liquid water present? at $125^{\circ} \mathrm{C}$?
19. A mixture of air and benzene contains 10 mole $\%$ benzene at $43^{\circ} \mathrm{C}$ and 105 kPa pressure. At what temperature does the first liquid form? What is the liquid?
20. The dew point of water in atmospheric air is $82^{\circ} \mathrm{F}$. What is the mole fraction of water vapor in the air if the barometric pressure is 750 mm Hg ?
21. Ten pounds of KClO_{3} is completely decomposed and the oxygen evolved collected over water at $80^{\circ} \mathrm{F}$. The barometer reads 29.7 in. Hg. What weight of saturated oxygen is obtained?
22. If a gas is saturated with water vapor, describe the state of the water vapor and the air if it is:
(a) Heated at constant pressure.
(b) Cooled at constant pressure.
(c) Expanded at constant temperature.
(d) Compressed at constant temperature.
23. Calculate (a) the pressure at the dew point for the following mixture at $100^{\circ} \mathrm{F}$ and (b) the liquid composition. Chemical Engineering Principles-I

Dr.Ali H.Abbar

Component	Mole fraction	K values at psia of		
		190	200	210
$\mathrm{C}_{2} \mathrm{H}_{6}$	0.218	3.22	3.07	2.92
$\mathrm{C}_{3} \mathrm{H}_{8}$	0.665	1.005	0.973	0.92
i- $\mathrm{C}_{4} \mathrm{H}_{10}$	0.1073	0.45	0.43	0.41

$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$	0.0097	0.315	0.305	0.295
Total	1			

24. Is the critical point a single phase? If not, what phases are present? Repeat for the triple point (for water).
25. A vessel contains air: $\mathrm{N}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\mathrm{~g})$, and $\mathrm{Ar}(\mathrm{g})$.
(a) How many phases, components, and degrees of freedom are there according to the phase rule?
(b) Repeat for a vessel one-third filled with liquid ethanol and two-thirds filled with N_{2} plus ethanol vapor.

Answers:

1. $1883 \mathrm{ft}^{3}$
2. $\quad 2.98 \mathrm{~kg}$
3. 1.32
4. $28.3 \mathrm{~m}^{3} / \mathrm{hr}$
5. $\quad 0.0493 \mathrm{~kg} / \mathrm{m}^{3}$
6. $1.02\left(\mathrm{lb} \mathrm{CH}_{4} / \mathrm{ft}^{3}\right.$ at $70^{\circ} \mathrm{F}$ and 2 atm$) /\left(\mathrm{lb}\right.$ air/ ft^{3} at S.C. $)$
7. $\mathrm{N}_{2}, 0.28$ psia; $\mathrm{CH}_{4}, 10.9$ psia; $\mathrm{C}_{2} \mathrm{H}_{6}, 2.62$ psia
8. (a) 11.12 psia at $2 \mathrm{ft}^{3}$ and $120^{\circ} \mathrm{F}$; (b) 0.28 psia at $2 \mathrm{ft}^{3}$ and $120^{\circ} \mathrm{F}$
9. $\quad \mathrm{V}_{\mathrm{ci}}=\mathrm{R} \mathrm{T}_{\mathrm{c}} / \mathrm{P}_{\mathrm{c}}$. It can be used to calculate V_{r}, which is a parameter on the Nelson and Obert charts.
10. 1.65 kg
11. 14.9 atm
12. $V=0.60 \mathrm{ft}^{3}$
13. 314 K
14. (a) 50.7 atm ; (b) 34.0 atm
15. 262 atm
16. predicted 220.9 mm Hg
17. The partial pressure of the vapor equals the vapor pressure of the gas. Liquid and vapor are in equilibrium.
18. Yes; yes
19. $21^{\circ} \mathrm{C}$; benzene
20. 0.0373
21. 4.00 lb

Chemical Engineering Principles-I

22. (a) Both gas; (b) some liquid water, residual is gas; (c) both gas; (d) some liquid water, residual is gas.
23. 190 psia; $\mathrm{C}_{2} \mathrm{H}_{6}=0.0677, \mathrm{C}_{3} \mathrm{H}_{8}=0.66, \mathrm{i}-\mathrm{C}_{4} \mathrm{H}_{10}=0.2415$, $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}=0.0308$.
24. No, gas and liquid in equilibrium. The triple point in the $\mathrm{p}-\mathrm{T}$ projection in actually a line on the $\mathrm{p}-\mathrm{V}-\mathrm{T}$ surface. The pressure and temperature are fixed but the volume is not fixed. 25. (a) $\mathrm{C}=3, \mathrm{P}=1, \mathrm{~F}=4$; (b) $\mathrm{C}=$ $2, \mathrm{P}=2, \mathrm{~F}=2$
