FOURIER TRANSFORM

To represent non-periodic signals in the frequency domain, we introduce the Fourier transform. Let $x(t)$ be a non-periodic signal. Then the Fourier transform of $x(t)$, symbolized by \mathcal{F}, is defined by $X(\omega)=\mathcal{F}[x(t)]=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$

The inverse Fourier transform of $X(\omega)$, symbolized by \mathcal{F}^{-1}, is defined by
$x(t)=\mathcal{F}^{-1}[X(\omega)]=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega$
Example 3.1: Find the Fourier transform of the rectangular pulse signal $x(\mathrm{t})$ defined by

Sol, $\quad x(t)=\operatorname{rect}(t)=\left\{\begin{array}{lll}1 & & |t|<1 / 2 \\ 0 & 1 & |t|>1 / 2\end{array}\right.$

$$
\begin{aligned}
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t & =\int_{-1 / 2}^{1 / 2} e^{-j \omega t} d t \\
=-\left.\frac{1}{j \omega} e^{-j \omega t}\right|_{-1 / 2} ^{1 / 2} & =\frac{-1}{j \omega}\left[e^{-j \omega / 2}-e^{j \omega / 2}\right] \\
& =\frac{1}{j \omega}\left[e^{j \omega / 2}-e^{-j \omega / 2}\right] \\
& =\frac{2}{\omega}\left[\frac{e^{j \omega / 2}-e^{-j \omega / 2}}{2 j}\right]
\end{aligned}
$$

$$
=\frac{2}{\omega} \sin (\omega / 2)=\frac{\sin (\omega / 2)}{(\omega / 2)}=\operatorname{sa}(\omega / 2)
$$

3.1 Properties of the Fourier Transform

We use the notation $x(t) \leftrightarrow X(\omega)$ to denote the Fourier transform pair.

3.1.1 Linearity (Superposition)

$$
\begin{equation*}
a_{1} x_{1}(t) \pm a_{2} x_{2}(t) \leftrightarrow a_{1} X_{l}(\omega) \pm a_{2} X_{2}(\omega) \tag{5.3}
\end{equation*}
$$

where a_{1} and a_{2} are any constants.

3.1.2 Time Shifting

$$
\begin{equation*}
x\left(t \pm t_{o}\right) \leftrightarrow X(\omega) e^{ \pm j \omega t_{o}} \tag{5.4}
\end{equation*}
$$

For example we have in example $1 \mathcal{F}[\operatorname{rect}(t)]=\mathrm{sa}(\omega / 2)$, then
$\mathcal{F}[\operatorname{rect}(t-2)]=e^{-2 j \omega} \mathrm{sa}(\omega / 2) \quad$ (proof)

3.1.3 Frequency shifting

$$
\begin{equation*}
x(t) e^{ \pm j \omega_{o} t} \leftrightarrow X\left(\omega \mp \omega_{o}\right) \tag{5.5}
\end{equation*}
$$

For example we have in example $1 \mathcal{F}[\operatorname{rect}(t)]=\mathrm{sa}(\omega / 2)$, then $\mathcal{F}\left[e^{2 j t} \operatorname{rect}(t)\right]=\operatorname{sa}\left(\frac{\omega-2}{2}\right) \quad$ (proof)

3.1.4 Scaling

$$
\begin{equation*}
x(a t) \leftrightarrow \frac{1}{|a|} X\left(\frac{\omega}{a}\right) \tag{5.6}
\end{equation*}
$$

For example we have in example $1 \mathcal{F}[\operatorname{rect}(t)]=\mathrm{sa}(\omega / 2)$, then
$\mathcal{F}[\operatorname{rect}(2 t)]=\frac{1}{|2|} \mathrm{sa}\left(\frac{\omega / 2}{2}\right) \quad$ (proof)

3.1.5 Time differentiation

$$
\begin{equation*}
\frac{d}{d t} x(t) \leftrightarrow j \omega X(\omega) \tag{5.7}
\end{equation*}
$$

3.1.6 Time integration

$$
\begin{equation*}
\int x(t) \leftrightarrow \frac{1}{j \omega} X(\omega) \tag{5.8}
\end{equation*}
$$

$\underline{\boldsymbol{H} . \boldsymbol{W} \text { : Verify Eqs. (3.3) to (3.8). }}$
Example 3.2: Find the Fourier transform of the rectangular pulse signal $x(\mathrm{t})$ defined by
$x(t)=\operatorname{rect}\left(\frac{t-1}{2}\right)=\left\{\begin{array}{lr}1 & 0<t<2 \\ 0 & \text { elsewhere }\end{array}\right.$
Sol.

There are two solutions:

First solution: Using the properties

1) Applying scaling property
we have in example $1 \mathcal{F}[\operatorname{rect}(t)]=\mathrm{sa}(\omega / 2)$, then

$$
\mathcal{F}\left[\operatorname{rect}\left(\frac{1}{2} t\right)\right]=\frac{1}{|1 / 2|} \mathrm{sa}\left(\frac{\frac{\omega}{1 / 2}}{2}\right)=2 \operatorname{sa}(\omega)
$$

2) Applying time- shifting property
we have $\mathcal{F}\left[\operatorname{rect}\left(\frac{1}{2} t\right)\right]=2 \mathrm{sa}(\omega)$, then

$$
\mathcal{F}\left[\operatorname{rect}\left(\frac{\mathrm{t}-1}{2}\right)\right]=2 e^{-j \omega} \operatorname{sa}(\omega)
$$

Second solution: Using the general equation

$$
\begin{aligned}
X(\omega)= & \int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
= & \int_{0}^{2} 1 \cdot e^{-j \omega t} d t \\
= & -\left.\frac{1}{j \omega} e^{-j \omega t}\right|_{0} ^{2} \\
= & \frac{-1}{j \omega}\left[e^{-j \omega * 2}-1\right] \\
= & \frac{1}{j \omega}\left[1-e^{-j \omega * 2}\right] \\
& =\frac{1}{j \omega} e^{-j \omega}\left[e^{j \omega}-e^{-j \omega}\right] \times \frac{2}{2} \\
& =\frac{2}{\omega} e^{-j \omega}\left[\frac{e^{j \omega}-e^{-j \omega}}{2 j}\right] \\
& =\frac{2}{\omega} e^{-j \omega} \sin (\omega)=2 e^{-j \omega} \frac{\sin (\omega)}{(\omega)}=2 e^{-j \omega} \operatorname{sa}(\omega)
\end{aligned}
$$

3.2 Fourier Transforms of Some Useful Signals

$$
\begin{aligned}
& \delta(t) \longleftrightarrow 1 \\
& \delta\left(t-t_{o}\right) \longleftrightarrow e^{-j \omega t_{o}} \\
& 1 \longleftrightarrow 2 \pi \delta(\omega) \\
& e^{j \omega t_{o}} \longleftrightarrow 2 \pi \delta\left(\omega-\omega_{o}\right)
\end{aligned}
$$

H.W// Find the F.T of the following signals:
(1) $x(t)=A \operatorname{rect}\left(\frac{t-3}{6}\right)$,
(2) $x(t)=\operatorname{Arect}\left(\frac{t+2}{3}\right)$,
(3) $x(t)=\cos \omega_{0} t$
(4) $x(t)=\operatorname{sgn}(t)$

