FOURIER TRANSFORM

To represent non-periodic signals in the frequency domain, we introduce the Fourier transform. Let x(t) be a non-periodic signal. Then the *Fourier transform* of x(t), symbolized by \mathcal{F} , is defined by $X(\omega) = \mathcal{F}[x(t)] = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$ (5.1) The *inverse* Fourier transform of $X(\omega)$, symbolized by \mathcal{F}^{-1} , is defined

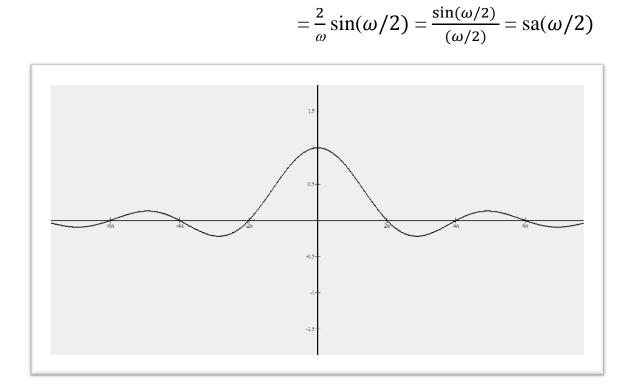
by

$$x(t) = \mathcal{F}^{-1}[X(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$
(5.2)

Example 3.1: Find the Fourier transform of the rectangular pulse signal x(t) defined by

Sol.
$$x(t) = rect(t) = \begin{cases} 1 & |t| < 1/2 \\ 0 & |t| > 1/2 \end{cases}$$

 $x(t) = rect(t) = \begin{cases} 1 & |t| < 1/2 \\ |t| > 1/2 \end{cases}$
 $x(t) = \int_{-1/2}^{\infty} x(t) e^{-j\omega t} dt = \int_{-1/2}^{1/2} e^{-j\omega t} dt$
 $= -\frac{1}{j\omega} e^{-j\omega t} \Big|_{-1/2}^{1/2} = \frac{-1}{j\omega} \Big[e^{-j\omega/2} - e^{j\omega/2} \Big]$
 $= \frac{1}{j\omega} \Big[e^{j\omega/2} - e^{-j\omega/2} \Big]$
 $= \frac{2}{\omega} \Big[\frac{e^{j\omega/2} - e^{-j\omega/2}}{2j} \Big]$



<u>3.1 Properties of the Fourier Transform</u>

We use the notation $x(t) \leftrightarrow X(\omega)$ to denote the Fourier transform pair.

3.1.1 Linearity (Superposition)

$$a_1 x_1(t) \pm a_2 x_2(t) \leftrightarrow a_1 X_1(\omega) \pm a_2 X_2(\omega)$$
(5.3)

where a_1 and a_2 are any constants.

3.1.2 Time Shifting

$$x(t \pm t_o) \leftrightarrow X(\omega) e^{\pm j\omega t_o} \tag{5.4}$$

For example we have in example $\mathcal{F}[rect(t)] = sa(\omega/2)$, then

$$\mathcal{F}[rect(t-2)] = e^{-2j\omega} \operatorname{sa}(\omega/2) \quad (proof)$$

3.1.3 Frequency shifting

$$x(t)e^{\pm j\omega_0 t} \leftrightarrow X(\omega \mp \omega_0) \tag{5.5}$$

For example we have in example $\mathcal{F}[rect(t)] = sa(\omega/2)$, then

$$\mathcal{F}[e^{2jt}rect(t)] = \operatorname{sa}(\frac{\omega-2}{2})$$
 (proof)

3.1.4 Scaling

$$x(at) \leftrightarrow \frac{1}{|a|} X\left(\frac{\omega}{a}\right)$$
 (5.6)

For example we have in example $\mathcal{F}[rect(t)] = sa(\omega/2)$, then

$$\mathcal{F}[rect(2t)] = \frac{1}{|2|} \operatorname{sa}(\frac{\omega/2}{2})$$
 (proof)

3.1.5 Time differentiation

$$\frac{d}{dt}x(t) \leftrightarrow j\omega X(\omega) \tag{5.7}$$

3.1.6 Time integration

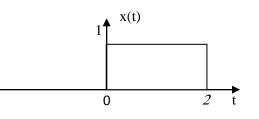
$$\int x(t) \leftrightarrow \frac{1}{j\omega} X(\omega)$$
(5.8)

<u>*H.W*:</u> Verify Eqs. (3.3) to (3.8).

Example 3.2: Find the Fourier transform of the rectangular pulse signal x(t) defined by

 $x(t) = rect\left(\frac{t-1}{2}\right) = \begin{cases} 1 & 0 < t < 2\\ 0 & elsewhere \end{cases}$

<u>Sol.</u>



There are two solutions:

First solution: Using the properties

1) Applying scaling property

we have in example 1 $\mathcal{F}[rect(t)] = sa(\omega/2)$, then

$$\mathcal{F}\left[rect\left(\frac{1}{2}t\right)\right] = \frac{1}{|1/2|}\operatorname{sa}(\frac{\omega}{\frac{1}{2}}) = 2\operatorname{sa}(\omega)$$

2) Applying time- shifting property we have $\mathcal{F}\left[rect\left(\frac{1}{2}t\right)\right] = 2 \operatorname{sa}(\omega)$, then $\mathcal{F}\left[rect\left(\frac{t-1}{2}\right)\right] = 2e^{-j\omega}\operatorname{sa}(\omega)$

Second solution: Using the general equation

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

$$= \int_{0}^{2} 1 \cdot e^{-j\omega t} dt$$

$$= -\frac{1}{j\omega} e^{-j\omega t} \Big|_{0}^{2}$$

$$= \frac{-1}{j\omega} \Big[e^{-j\omega * 2} - 1 \Big]$$

$$= \frac{1}{j\omega} \Big[1 - e^{-j\omega * 2} \Big]$$

$$= \frac{1}{j\omega} e^{-j\omega} \Big[e^{j\omega} - e^{-j\omega} \Big] \times \frac{2}{2}$$

$$= \frac{2}{\omega} e^{-j\omega} \Big[\frac{e^{j\omega} - e^{-j\omega}}{2j} \Big]$$

$$= \frac{2}{\omega} e^{-j\omega} \sin(\omega) = 2e^{-j\omega} \frac{\sin(\omega)}{(\omega)} = 2e^{-j\omega} \operatorname{sa}(\omega)$$

3.2 Fourier Transforms of Some Useful Signals

$$\delta(t) \longleftrightarrow 1$$

$$\delta(t-t_o) \longleftrightarrow e^{-j\omega t_o}$$

$$1 \longleftrightarrow 2\pi \,\delta(\omega)$$

$$e^{j\omega t_o} \longleftrightarrow 2\pi \,\delta(\omega - \omega_o)$$

H.W// Find the F.T of the following signals:

(1) $x(t) = A \operatorname{rect}(\frac{t-3}{6}),$ (2) $x(t) = \operatorname{Arect}(\frac{t+2}{3}),$ (3) $x(t) = \cos \omega_0 t$

(4)x(t) = sgn(t)