ALMUSTAQBAL UNIVERSITY

College of Health and Medical Techniques

Medical Laboratories Techniques Department

Stage : First year students

Subject : Lecture 9A

Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

VOLUMETRIC (Titration) CALCULATIONS

In titration (a moles of ACID \equiv b moles of BASE)

Then

 $\frac{M_a V_a}{n_a} = \frac{M_b V_b}{n_b}$

M_a = molarity of the acid	$\mathbf{M}_{\mathbf{b}}$ = molarity of the base
$V_a =$ volume of the acid	V_b = volume of the base
$n_a = No. of moles (acid)$	n _b = No. of moles (base)

Example 1:

The volume needed of a 0.1 M standard solution of HCl on titration of 100 mL of NaOH solution to the end point is 75.8 mL. Calculate the molar concentration of NaOH solution.

Solution:

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$$

 $n_a = 1$ $n_b = 1$ (stiochiometric mole ratios of acid and base)

$$\frac{M_{a} V_{a}}{n_{a}} = \frac{M_{b} V_{b}}{n_{b}}$$
$$\frac{75.8 \times 0.10}{1} = \frac{M_{b} \times 100}{1}$$
$$M_{b} = \frac{75.8 \times 0.10}{100} = 0.0758 M$$

Example 2:

20 mL of H₂SO₄ (98 g/mol) was neutralized with 25mL of 0.1M sodium hydroxide solution. The equation of reaction is

$$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$$

Calculate:

(i) conc. of acid in M (ii) acid content of the solution in grams.

Solution:

$$\frac{M_a V_a}{n_a} = \frac{M_b V_b}{n_b}$$
$$\frac{M_a x 20.0}{1} = \frac{0.10 x 25}{2}$$

Concentration of H₂SO₄ (M_a) = $\frac{1 \times 0.10 \times 25}{2 \times 20}$ = 0.0625 M

ii) mass of the acid in the solution(g)

mass (g) = Molarity(M) x Volume (L) x Molar mass (g/mol)

mass (g) = $0.0625 \text{ x} (20 \text{ x} 10^{-3}) \text{ L x } 98 = 0.1225 \text{ g}$

Example 3:

50 mL portion of HCl solution required 29.71 mL of (0.019M) Ba $(OH)_2$ to reach an end point with bromocresol green indicator, Calculate the molarity of HCl.

Solution:

 $Ba(OH)_2 + 2HCl \rightarrow BaCl_2 + 2H_2O$

1mole 2 mole 1mole

$$\frac{M_a V_a}{n_a} = \frac{M_b V_b}{n_b}$$

 $\frac{M_{HCl} x V_{HCl}}{2} = \frac{M_{Ba(OH)2} x V_{Ba(OH)2}}{1}$

$$M_{HCl} = \frac{2[M_{Ba(OH)2} \times V_{Ba(OH)2}]}{V_{HCl}}$$
$$M_{HCl} = \frac{2[0.019 \times 29.71]}{50} = 0.023 \text{ M}$$