

Experiment (5)

<u>Measuring The Number of Lines Grating by Diffraction of Laser</u> <u>Radiation.</u>

Apparatus:

Laser diode, diffraction grating, ruler and screen.

Theory:

<u>A laser:</u> is a unique light source that emits a narrow beam of light of a single wavelength (monochromatic light) in which each wave is in phase of a single wavelength with the others near it (coherent light). normally consists of a long narrow tube with a fully reflective mirror at one end and a partially reflective mirror at other.

Laser properties:

- I- Monochromatic
- 2- Coherent
- 3- Directionality
- 4- Very bright

Diffraction of Light

Diffraction refers to various phenomena that occur when a wave encounters an obstacle or a slit. <u>It is defined as the bending of light</u> around the corners of an obstacle or aperture into the region of geometrical shadow of the obstacle.

Diffraction Grating

Diffraction grating is a thin film of clear glass or plastic that has a large number of lines per (mm) drawn on it. When light from a bright and small source passes through a diffraction grating, The very thin space between every two adjacent lines of the grating becomes an independent source.

ت

Types of Diffraction Grating:

1-transmission grating.

2-reflection grating.

3- film grating or Membranous groove.

Procedure

1- Laser light shines on a diffraction grating

2_ When the laser light passes through the notch, each slit of the notch will emit a wave, as a result of the interference between the waves, light and dark fringes will be obtained

3- We note that when the distance between the diffraction notch and the laser is 40 cm, the fringes will be obtained clearly

4- We calculate the distance between the fringes, y, from the middle of the central fringe to the middle of the required fringe

Data sheet

m	У	tano	Φ	sino	d=m λ /	N=1/d
					sino	
1	3.6					
2	7.4					
D=40cm λ =360nm						
على الشراعات						
$d \sin \phi = m\lambda$						

Where (m) the order of diffraction; m=1,2,3,... (d) the spacing between every two lines of the grating

If there are (5) lines per mm of the grating (n), then (d) the space between every two adjacent lines is:

N=1/d