كاليه المستقبـل الجامعة

قسم الفيزياء الطبيةة

g

²

2022-2023

路

Measuring The Number of Lines Grating by Diffraction of Laser Radiation.

Apparatus:

Laser diode, diffraction grating, ruler and screen.

Theory:

A laser: is a unique light source that emits a narrow beam of light of a single wavelength (monochromatic light) in which each wave is in phase of a single wavelength with the others near it (coherent light). normally consists of a long narrow tube with a fully reflective mirror at one end and a partially reflective mirror at other.
Laser properties:
I- Monochromatic
2- Coherent
3- Directionality
4- Very bright

Diffraction of Light

Diffraction refers to various phenomena that occur when a wave encounters an obstacle or a slit. It is defined as the bending of light around the corners of an obstacle or aperture into the region of geometrical shadow of the obstacle.

Diffraction Grating

Diffraction grating is a thin film of clear glass or plastic that has a large number of lines per ($\mathbf{m m}$) drawn on it. When light from a bright and small source passes through a diffraction grating, The very thin space between every two adjacent lines of the grating becomes an independent source.

Types of Diffraction Grating:

1 -transmission grating.
2-reflection grating.
3-film grating or Membranous groove.

Procedure

1- Laser light shines on a diffraction grating
2 _ When the laser light passes through the notch, each slit of the notch will emit a wave, as a result of the interference between the waves, light and dark fringes will be obtained

3- We note that when the distance between the diffraction notch and the laser is 40 cm , the fringes will be obtained clearly

4- We calculate the distance between the fringes, y, from the middle of the central fringe to the middle of the required fringe

Data sheet

m	y	$\tan \varphi$	ω	$\sin \varphi$	$\mathrm{d}=\mathrm{m} \lambda /$ $\sin \varphi$	$\mathrm{N}=1 / \mathrm{d}$
1	3.6					
2	7.4					
$\mathrm{D}=40 \mathrm{~cm}$						

$\mathrm{d} \sin \omega=\mathrm{m} \boldsymbol{\lambda}$

Where (m) the order of diffraction; $m=1,2,3, \ldots$. (d) the spacing between every two lines of the grating

If there are (5) lines per mm of the grating (n), then (d) the space between every two adjacent lines is:

$$
\mathrm{N}=1 / \mathrm{d}
$$

