ALMUSTAQBAL UNIVERSITY

College of Health and Medical Techniques

Medical Laboratories Techniques Department
Stage : First year students
Subject : Lecture 8A
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Calculations of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH},\left[\mathrm{OH}^{-}\right]$and pOH for strong Acids and Bases

A solution is acidic if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$. and is basic if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$.
Strong acids are acids that completely dissociate in water.
Strong acids, such as HNO_{3}, almost completely dissociated

$$
\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \rightarrow \quad \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \quad+\mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

0.1 M
0.1 M

The hydronium ion $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is the acidic species in solution, and its concentration determines the acidity of the resulting solution
pH of a strong acids:
When a solution of $0.1 \mathrm{M} \mathrm{HNO}_{3}$ dissolves in water it dissociates completely to its ions (i.e : $0.1 \mathrm{M}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$).
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{C}$ where C is the initial concentration of the strong acid
Example :
Calculate the pH of a 0.1 M solution of HCl .
$\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
$0.1 \mathrm{M} \quad 0.1 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{C}=$ The original concentration of the strong acid $[\mathrm{HCl}]=0.1 \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log (0.1)=1$

Example:

Calculate the pH of the following strong acid solutions:
(a) $1.3 \times 10^{-2} \mathrm{M} \mathrm{HClO}_{4}$,
(b) $1.3 \times 10^{-3} \mathrm{M} \mathrm{HCl}$,
(c) $1.3 \times 10^{-4} \mathrm{M} \mathrm{HNO}_{3}$.

Solution:
a) $\mathrm{HClO}_{4}+\mathrm{H}_{2} \mathrm{O} \quad \rightarrow \quad \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{ClO}_{4}^{-}$

$$
1.3 \times 10^{-2} \mathrm{M} \quad 1.3 \times 10^{-2} \mathrm{M}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log 1.3 \times 10^{-2}=1.89
$$

(b) $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$

$$
1.3 \times 10^{-3} \mathrm{M} \quad 1.3 \times 10^{-3} \mathrm{M}
$$

$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log 1.3 \times 10^{-3}=2.89$
c) $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-}$
$1.3 \times 10^{-4} \mathrm{M} \quad 1.3 \times 10^{-4} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left[1.3 \times 10^{-4}\right]=3.89$

Example:
Calculate the pOH and pH of the following strong base solutions:
(a) 0.05 M NaOH ,
(b) $0.05 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$,
(c) $0.05 \mathrm{M} \mathrm{La}(\mathrm{OH})_{3}$.
solution:
a) $\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
0.05 M

$$
0.05 \mathrm{M}
$$

$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log 5 \times 10^{-2}=1.3$
As $\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{pH}=14-1.3=12.7$
b) $\mathrm{Ca}(\mathrm{OH})_{2} \quad \rightarrow \quad \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}$

$$
0.05 \mathrm{M} \quad 2(0.05)=0.1 \mathrm{M}
$$

$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log 0.1=1.0$
$\mathrm{pH}=14-1.0=13.0$
c) $\mathrm{La}(\mathrm{OH})_{3} \quad \rightarrow \quad \mathrm{La}^{3+}+3 \mathrm{OH}^{-}$
0.05 M

$$
3(0.05)=0.15 \mathrm{M}
$$

$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log 0.15=0.82$
$\mathrm{pH}=14-0.82=13.18$
Example:
Calculate the hydrogen ion concentration $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] for the solutions with the following pH values: (a) 3.47 , (b) 0.20 , (c) 8.60 .
solution:
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\mathrm{pH}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathbf{1 0}^{-\mathrm{pH}}$
(a) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-3.47}=3.4 \times 10^{-4} \mathrm{M}$.
(b) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-0.2}=6.3 \times 10^{-1} \mathrm{M}$.
(c) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-8.6}=2.5 \times 10^{-9} \mathrm{M}$.

Example:

Calculate the change in $\mathbf{p H}$ for 0.01 M HCl solution on 10 times dilution.
Solution:

$$
\mathbf{p H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

a. Before dilution (original solution)

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.01=10^{-2} \mathrm{M} \quad \mathrm{pH}=-\log (0.01)=2
$$

b. After dilution for 10 times
$\mathbf{M}_{1} \mathbf{V}_{\mathbf{1}}=\mathbf{M}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$
$1 \times 0.01=10 \times \mathrm{M}_{2}$
$\mathrm{M}_{2}=\mathbf{0 . 0 0 1}=10^{-3} \mathrm{M} \quad \mathrm{pH}=-\log \left(10^{-3}\right)=3$
$\Delta \mathrm{pH}=3-2=1$
Then Changing the concentration for 10 times changes the pH by 1 unit

Exercise:

Calculate the change in $\mathbf{p H}$ for $0.1 \mathrm{M} \mathrm{HNO}_{3}$ solution on dilution of 100 times. Example :

Calculate the pH of a solution obtained by mixing the following volumes of the two solutions of the strong acid HCl :
a) 100 mL of $(\mathrm{pH}=2)$
b) 500 mL of $(\mathrm{pH}=4)$.
solution:
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{PH}}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{a}}=10^{-2} \mathrm{M}$ the concentration of the $\mathrm{pH}=2$ acid
[$\left.\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{b}}=10^{-4} \mathrm{M}$ the concentration of the $\mathrm{pH}=4 \mathrm{acid}$
No. of moles of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {total }}=$ No. of moles of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{a}}+$ No. of moles of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{b}}$
No. of moles $=$ Molarity (M) \times Volume (liter)

$$
\mathrm{V}_{\mathrm{a}}(\text { liter })=\frac{100(m L)}{1000}=0.1 \mathrm{~L} \quad \mathrm{~V}_{\mathrm{b}}(\text { liter })=\frac{500(m L)}{1000}=0.5 \mathrm{~L}
$$

No. of moles of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{a}}=10^{-2} \mathrm{Mx} 0.1$ liter $=10^{-3}$ mole
No. of moles of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{b}}=10^{-4} \mathrm{M} \times 0.5$ liter $=5 \times 10^{-5}$ mole
No. of moles of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {total }}=5 \times 10^{-5}+10^{-3}=1.05 \times 10^{-3}$ moles
Molarity of the resulting solution $=\frac{\text { No.of moles of }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {total }}}{\left(V_{a}+V_{b}\right) \text { liter }}$
Molarity of the resulting solution $=\frac{1.05 \times 10^{-3} \mathrm{~mole}}{(0.1+0.5) \text { liter }}=1.75 \times 10^{-3} \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {total }}=1.75 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=-\log \left(1.75 \times 10^{-3} \mathrm{M}\right)=2.75$

Exercise 1: Calculate the pH of the acidic solution obtained by mixing 100 mL of $(\mathrm{pH}=2)$ of HCl with 400 mL of $(\mathrm{pH}=3)$ of HNO_{3}.

Exercise 2: Calculate the pH of the basic solution obtained by mixing 200 mL of ($\mathrm{pH}=10$) of KOH with 300 mL of $(\mathrm{pH}=8)$ of NaOH .

Example :

Calculate the pH of a solution obtained by mixing 50 mL of the strong acid HCl solution ($\mathrm{pH}=3.0$) with 10 mL of the strong base KOH solution ($\mathrm{pH}=12.0$).

Answer:
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
[$\mathrm{H}_{3} \mathrm{O}^{+}$] for HCl solution $=1.0 \times 10^{-3} \mathrm{M}$.
[$\mathrm{H}_{3} \mathrm{O}^{+}$] for KOH solution $=1.0 \times 10^{-12} \mathrm{M}$.
As $\left[\mathrm{OH}^{-}\right]=\frac{K_{w}}{\left[H_{3} O^{+}\right]}$then
$\left[\mathrm{OH}^{-}\right]$for KOH solution $=\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-12}}=1.0 \times 10^{-2} \mathrm{M}$
mmole $\mathrm{HCl}=$ Molarity x volume (mL)
$\mathrm{mmol} \mathrm{HCl}=1.0 \times 10^{-3} \mathrm{M} \times 50 \mathrm{~mL}=0.05 \mathrm{mmol}$
$\mathrm{mmol} \mathrm{KOH}=1.0 \times 10^{-2} \mathrm{M} \times 10 \mathrm{~mL}=0.1 \mathrm{mmol}$
$\mathrm{HCl}+\mathrm{KOH} \rightarrow \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}$
$0.05 \mathrm{mmol} \quad 0.1 \mathrm{mmol}$
Excess of $\mathrm{KOH}=$ mmole $\mathrm{KOH}-$ mmole HCl
Excess of $\mathrm{KOH}=(0.1-0.05) \mathrm{mmol}=0.05 \mathrm{mmole}$
$\left[\mathrm{OH}^{-}\right]=\frac{0.05 \mathrm{mmol}}{(50+10) m \mathrm{~mL}}=8.33 \times 10^{-4} \mathrm{M}$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(8.33 \times 10^{-4}\right)=3.08$
$\mathrm{pH}=14-3.08=10.92$
Exercise: Calculate the pH of the solution obtained by mixing 10 mL of 0.20 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 20 mL of 0.30 M NaOH .

