ALMUSTAQBAL UNIVERSITY

College of Health and Medical Techniques

Medical Laboratories Techniques Department

Stage : First year students

Subject : Lecture 8A

Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Calculations of $[\rm H_3O^+],\,pH$, $[\rm OH^-]$ and pOH for strong Acids and Bases

A solution is acidic if $[H_3O^+] > [OH^-]$. and is basic if $[H_3O^+] < [OH^-]$.

Strong acids are acids that completely dissociate in water.

Strong acids, such as HNO₃, almost completely dissociated

 $HNO_3(aq) + H_2O(l) \rightarrow H_3O^+(aq) + NO_3^-(aq)$

0.1 M 0.1 MThe hydronium ion [H₃O⁺] is the acidic species in solution, and its concentration determines the acidity of the resulting solution

pH of a strong acids:

When a solution of 0.1 M HNO_3 dissolves in water it dissociates completely to its ions (i.e : 0.1 M [H_3O^+]).

 $[H_3O^+] = C$ where C is the initial concentration of the strong acid

Example :

Calculate the pH of a 0.1 M solution of HCl.

 $\begin{array}{rl} HCl(aq) + \ H_2O(l) \ \rightarrow \ H_3O^+(aq) + Cl^-(aq) \\ 0.1 \ M & 0.1 \ M \end{array}$

 $[H_3O^+] = C =$ The original concentration of the strong acid [HCl] = 0.1 M pH = - log $[H_3O^+] = - \log (0.1) = -1$

Example:

Calculate the pH of the following strong acid solutions:

(a) 1.3×10^{-2} M HClO₄, (b) 1.3×10^{-3} M HCl, (c) 1.3×10^{-4} M HNO₃.

Solution:

a) $HClO_4 + H_2O \rightarrow H_3O^+ + ClO_4^-$
1.3x10 ⁻² M 1.3x10 ⁻² M
pH = - log [H_3O^+] = - log 1. 3 × 10 ⁻² = 1.89
(b) HCl + H ₂ O \rightarrow H ₃ O ⁺ + Cl ⁻
1.3x10 ⁻³ M 1.3x 10 ⁻³ M
pH = - log [H_3O^+] = - log 1.3 x 10 ⁻³ = 2.89
c) $HNO_3 + H_2O \rightarrow H_3O^+ + NO_3^-$
$1.3 \times 10^{-4} \text{ M}$ $1.3 \times 10^{-4} \text{ M}$
$pH = -\log [H_3O^+] = -\log [1.3 \times 10^{-4}] = 3.89$

Example:

Calculate the pOH and pH of the following strong base solutions: (a) 0.05 M NaOH, (b) 0.05 M Ca(OH)₂, (c) 0.05 M La(OH)₃. solution:

a) NaOH \rightarrow Na⁺ + OH⁻ 0.05 M 0.05 M $pOH = -\log [OH^{-}] = -\log 5 \times 10^{-2} = 1.3$ As pH + pOH = 14pH = 14 - 1.3 = 12.7b) $Ca(OH)_2 \rightarrow Ca^{2+} + 2 OH^{-}$ 0.05 M 2(0.05) = 0.1 M $pOH = -\log [OH^{-}] = -\log 0.1 = 1.0$ pH = 14 - 1.0 = 13.0c) $La(OH)_3 \rightarrow La^{3+} + 3 OH^{-}$ 0.05 M 3(0.05) = 0.15 M $pOH = -\log [OH^{-}] = -\log 0.15 = 0.82$ pH = 14 - 0.82 = 13.18

Example:

Calculate the hydrogen ion concentration $[H_3O^+]$ for the solutions with the following pH values: (a) 3.47, (b) 0.20, (c) 8.60.

solution:

 $pH = -\log [H_3O^+]$ $log[H_3O^+] = -pH$ $[H_3O^+] = 10^{-pH}$ (a) $[H_3O^+] = 10^{-pH} = 10^{-3.47} = 3.4 \times 10^{-4} M.$ (b) $[H_3O^+] = 10^{-pH} = 10^{-0.2} = 6.3 \times 10^{-1} M.$

(c) $[H_3O^+] = 10^{-pH} = 10^{-8.6} = 2.5 \times 10^{-9} M$.

Example:

Calculate the change in pH for 0.01 M HCl solution on 10 times dilution.

Solution:

 $\mathbf{pH} = -\log\left[\mathbf{H}_{3}\mathbf{O}^{+}\right]$

a. Before dilution (original solution)

 $[H_3O^+] = 0.01 = 10^{-2}$ M $pH = -\log(0.01) = 2$

b. After dilution for 10 times

 $\mathbf{M}_1\mathbf{V}_1 = \mathbf{M}_2 \mathbf{V}_2$

 $1 \ge 0.01 = 10 \ge M_2$

 $M_2 = 0.001 = 10^{-3} M$ $pH = -log(10^{-3}) = 3$

 $\Delta \mathbf{pH} = \mathbf{3} - \mathbf{2} = \mathbf{1}$

Then Changing the concentration for 10 times changes the pH by 1 unit

Exercise:

Calculate the change in pH for 0.1 M HNO₃ solution on dilution of 100 times.

Example :

Calculate the pH of a solution obtained by mixing the following volumes of the two solutions of the strong acid HCl :

- a) 100 mL of (pH=2)
- b) 500 mL of (pH=4).

solution:

+ H₂O \rightarrow H₃O⁺ + Cl⁻ HC1 $[H_3O^+] = 10^{-PH}$ $[H_3O^+]_a = 10^{-2} M$ the concentration of the pH =2 acid $[H_3O^+]_b = 10^{-4} M$ the concentration of the pH =4 acid No. of moles of $[H_3O^+]_{total} = No.$ of moles of $[H_3O^+]_a + No.$ of moles of $[H_3O^+]_b$ No. of moles = Molarity (M) x Volume (liter) $V_a(liter) = \frac{100 (mL)}{1000} = 0.1 L$ $V_b(liter) = \frac{500 (mL)}{1000} = 0.5 L$ No. of moles of $[H_3O^+]_a = 10^{-2} \text{ M x } 0.1 \text{ liter} = 10^{-3} \text{ mole}$ No. of moles of $[H_3O^+]_b = 10^{-4} \text{ M x } 0.5 \text{ liter} = 5 \text{ x } 10^{-5} \text{ mole}$ No. of moles of $[H_3O^+]_{total} = 5 \times 10^{-5} + 10^{-3} = 1.05 \times 10^{-3}$ moles Molarity of the resulting solution = $\frac{\text{No.of moles of } [\text{H}_3\text{O}^+]_{total}}{(V_a + V_b) liter}$ Molarity of the resulting solution = $\frac{1.05 \times 10^{-3} \text{ mole}}{(0.1+0.5) \text{ liter}} = 1.75 \times 10^{-3} \text{ M}$ $[H_3O^+]_{total} = 1.75 \text{ x } 10^{-3} \text{ M}$ $pH = -log (1.75 \times 10^{-3} M) = 2.75$

Exercise 1: Calculate the pH of the acidic solution obtained by mixing 100 mL of (pH=2) of HCl with 400 mL of (pH=3) of HNO₃.

Exercise 2: Calculate the pH of the basic solution obtained by mixing 200 mL of (pH=10) of KOH with 300 mL of (pH=8) of NaOH.

Example :

Calculate the pH of a solution obtained by mixing 50 mL of the strong acid HCl solution (pH=3.0) with 10 mL of the strong base KOH solution (pH=12.0).

Answer:

 $[H_{3}O^{+}] = 10^{-pH}$ $[H_{3}O^{+}] \text{ for HCl solution} = 1.0 \times 10^{-3} \text{ M}.$ $[H_{3}O^{+}] \text{ for KOH solution} = 1.0 \times 10^{-12} \text{ M}.$ As $[OH^{-}] = \frac{K_{W}}{[H_{3}O^{+}]} \text{ then}$ $[OH^{-}] \text{ for KOH solution} = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-12}} = 1.0 \times 10^{-2} \text{ M}$ mmole HCl = Molarity x volume(mL) mmol HCl = 1.0 x 10^{-3} \text{ M x 50 mL} = 0.05 mmol mmol KOH = 1.0 x 10^{-2} \text{ M x 10mL} = 0.1 mmol

HCl + KOH \rightarrow KCl + H₂O

0.05 mmol 0.1 mmol

Excess of KOH = mmole KOH – mmole HCl

Excess of KOH = (0.1 - 0.05) mmol = 0.05 mmole

$$[OH^{-}] = \frac{0.05 \ mmol}{(50+10)mL} = 8.33 \ x10^{-4}M$$

 $pOH = -\log [OH^{-}] = -\log (8.33 \times 10^{-4}) = 3.08$

pH = 14 - 3.08 = 10.92

Exercise: Calculate the pH of the solution obtained by mixing 10 mL of 0.20 M H₂SO₄ and 20 mL of 0.30 M NaOH .