
1 
 

Heat Transfer by Convection 

Non-Dimensional Group Numbers Analysis 
 
 

The Objective: Studying the non-dimensional group numbers which are used in the                                        
convection heat transfer. 

 

Introduction:  

      In convection studies, it is common practice to nondimensionalize the governing equations 
and combines the variables, which group together into dimensionless numbers in order to 
reduce the number of total variables. 
  
Nusselt Number:   (Nu) 
 

It is common practice to nondimensionalize the heat transfer coefficient h with the Nusselt 
number, defined as: 
 

Where k is the thermal conductivity of the fluid and Lc is the characteristic length. 

              for External flow (flat plate,…)                         (9) 
 

Nu =  
ℎ𝐷

𝑘
          for Internal flow (pipe, duct,…)    

 
 
To understand the physical significance of the Nusselt number, consider a fluid layer of 

thickness Lc and temperature difference ΔT = T2 - T1, as shown in the figure. Heat transfer 
through the fluid layer will be by convection when the fluid involves some motion and by 
conduction when the fluid layer is motionless.    

 

Heat flux (the rate of heat transfer per unit time per unit surface area) in either case will be: 
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Which is the Nusselt number. Therefore, the Nusselt number represents the enhancement of 
heat transfer through a fluid layer as a result of convection relative to conduction across the 
same fluid layer. The larger the Nusselt number, the more effective the convection.  
 

A Nusselt number of Nu = 1 for a fluid layer represents heat transfer across the layer by                        
pure conduction. 
 
  
Reynolds Number: (Re) 
 

The transition from laminar to turbulent flow depends on the surface geometry, surface 
roughness, free-stream velocity, surface temperature, and type of fluid, among other things.  

 
The flow regime depends mainly on the ratio of the inertia forces to viscous forces in the 
fluid. This ratio is called the Reynolds number, which is a dimensionless quantity, and is 
expressed for external flow as: 
 

        Re = 𝐢𝐧𝐞𝐫𝐭𝐢𝐚 𝐟𝐨𝐫𝐜𝐞𝐬
𝐯𝐢𝐬𝐜𝐨𝐮𝐬 𝐟𝐨𝐫𝐜𝐞𝐬

  = 
𝑽𝑳𝒄

𝝂
     =     

ρ𝑉𝐿𝑐

𝜇
       for External flow         

       Re =   
ρ𝑉D

𝜇
                     for Internal flow          (10)          ,        ν  =    

 

 
 

                

    Where V   is the upstream velocity (equivalent to the free-stream velocity u∞ for a flat plate), 

Lc is the characteristic length of the geometry, and ν  =  is the kinematic viscosity of the 

fluid.  

For a flat plate, the characteristic length Lc is the distance x from the leading edge. The 

Reynolds number at which the flow becomes turbulent is called the critical Reynolds number 

which is equal to 5x105 for flat plate. For flow on flat plate Re < 5x10
5
 the flow is laminar, 

Re >5x10
5
 the flow is turbulent. 
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Prandtl Number:  (Pr) 
 

The relative thickness of the velocity and the thermal boundary layers is best described 
by the dimensionless parameter Prandtl number, defined as: 

 

Pr = 𝐌𝐨𝐥𝐞𝐜𝐮𝐥𝐚𝐫 𝐝𝐢𝐟𝐟𝐮𝐬𝐢𝐯𝐢𝐭𝐲 𝐨𝐟 𝐦𝐨𝐦𝐞𝐧𝐭𝐮𝐦
𝐌𝐨𝐥𝐞𝐜𝐮𝐥𝐚𝐫 𝐝𝐢𝐟𝐟𝐮𝐬𝐢𝐯𝐢𝐭𝐲 𝐨𝐟 𝐡𝐞𝐚𝐭 

  = 
𝝂

𝛂
    =    

𝛍 𝐂𝐩  

𝒌
                (11) 

 

Where: kinematic viscosity   =   and the thermal diffusivity (m2/s)  α = k /  Cp        
 
The Prandtl numbers of fluids range from less than 0.01 for liquid metals to more than 

100,000 for heavy oils. Note that the Prandtl number is in the order of 10 for water, and in 
order of 0.7 for air. 

  
Note:  Prandtl number is given in tables depending on fluid temperature. 

 

  

The Grashof Number: (Gr) 
 

The flow regime in forced convection is governed by the dimensionless Reynolds number, 
which represents the ratio of inertial forces to viscous forces acting on the fluid. The flow 
regime in natural convection is governed by the dimensionless Grashof number, which 
represents the ratio of the buoyancy force to the viscous force acting on the fluid. 

                         
                                                                                          (12) 

     
 

 

The Grashof number characteristic length Lc is:    
   

                                 (13)                     (  = 1/T ) 
 

 

      Since:         T  
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Where:        

 g = gravitational acceleration, m/s2 

 = coefficient of volume expansion, 1/K, ( = 1/T for ideal gases)  

Ts = temperature of the surface, 
°
C 

T∞ = temperature of the fluid sufficiently far from the surface, 
°
C  

V = Volume (m3) 

Lc = characteristic length of the geometry, m 

 = kinematic viscosity of the fluid, m2/s 
 

Rayleigh number: (Ra) 

It represents the product of the Grashof and Prandtl numbers: 
 

                           (14) 
 

The Reynolds analogy relates the convection coefficient h to the friction coefficient Cf for 

fluids with Prandtl Number, Pr 1, Cp is specific heat at constant pressure, V is fluid 

velocity,  is density,  and is expressed as: 

 

                                    (15) 

 

 

 

Analytical Solution of Convection Heat Transfer problems 

Equations of motion (Governing equations)  

The Objective:  To derive the governing equations of fluid flow in the boundary layers. 

Introduction:  

In convection studies, the analytical solution of the problems is very complicated. It can be 

done by solving the Conservation of Mass Equation, Conservation of Momentum 

Equations, and the Conservation of Energy Equation in one, two, or three dimension, for 

steady or unsteady flow. 
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      To keep the analysis at a manageable level, we assume the flow to be steady and two-

dimensional, and the fluid to be Newtonian with constant properties (density, viscosity, 

thermal conductivity, etc.). 

1- Mass conservation (continuity Equation): 

Conservation of mass principle is simply a statement that mass cannot be created or 

destroyed, and all the mass must be accounted for during an analysis.  

In steady flow within the control volume:   

       

                    

 

Where: u = fluid velocity in x-direction and v in y-direction 

2- Momentum conservation (Momentum Equation): 

     Newton’s second law is an expression for the conservation of momentum, and can be stated 

as the net force acting on the control volume is equal to the mass times the acceleration of 

the fluid element within the control volume, which is also equal to the net rate of momentum 

outflow from the control volume. We express Newton’s second law of motion for the control 

volume as, 

 

  

        Where: ρ = fluid density, P = fluid flow pressure 

 

3- Energy conservation (Energy Equation): 

 The energy balance for any system undergoing any process is expressed as  

Ein - Eout = ΔEsystem  

Which states that the change in the energy content of a system during a process is equal to 

the difference between the energy input and the energy output. During a steady-flow process, 

the total energy content of a control volume remains constant (and thus       ΔEsystem = 0), or: 
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0=− outEinE   

 

The continuity, momentum, and energy equations for steady two-dimensional 

incompressible flow with constant properties are determined from mass, momentum, and 

energy balances to be: 

 

With the boundary conditions for each case under investigation, the problem can be solved 

analytically. It is more convenient to solve the problems by numerical consideration to the 

governing equation within a specified domain in the flow field. 

 

 

Solution of one dimensional steady state forced convection on flat plate 
 

Using the boundary layer approximations and a similarity variable (Blasius solution), these 

equations can be solved for parallel steady incompressible flow over a flat plate, with the 

following results: 
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The average friction coefficient and Nusselt number are expressed in functional form as, 

        ( Re = ρU x /  )    

 

 

Example-1: 

A metallic airfoil of elliptical cross section has a mass of 50 kg, surface area of 12 m2, and a 

specific heat of 0.50 kJ/kg.˚C). The airfoil is subjected to air flow at 1atm, 25˚C, and 8 m/s 

along its 3m long side. The average temperature of the airfoil is observed to drop from 160 ˚C 

to 150 ˚C within 2 min of cooling. Assuming the surface temperature of the airfoil to be equal 

to its average temperature and using momentum-heat transfer analogy, determine the average 

friction coefficient of the airfoil surface. 

 

 

 

 

Solution:    

Assumptions:  1- Steady operating conditions exist. 2- The edge effects are negligible.  

Properties The properties of air at 25C and 1 atm are (from Tables)  
 

 = 1.184 kg/m3,      Cp =1.007 kJ/kg.K, Pr = 0.7296 

Air 

25C 

L=3 m 
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The rate of heat transfer from: 
 

      W2083
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The surface temperature of airfoil is taken as its average  

temperature, which is:             Ts = (150+160) / 2=155 C  

 

Then the average heat transfer coefficient h is determined by: 
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The average friction coefficient of the airfoil is determined from the modified                                      

Reynolds analogy to be:  

  

 From equation:         
 

0.000227=



=


=
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Test: 

Q1: What is the physical significance of the Nusselt number? How is it defined? 
 

Q2: What are the advantages of nondimensionalizing the convection equations? 

Air 

25C 

8 m/s 

L=3 m 


