# Lecture 6 <br> Proof methods 

We will discuss four proof methods:

1. Direct proof
2. Indirect proof
3. Proof by contradiction
4. Counter examples

## 1. Direct proof:

Consider an implication: $p \rightarrow q$

- If $p$ is false, then the implication is always true
- Thus, show that if $p$ is true, then $q$ is true

To perform a direct proof, assume that $p$ is true, and show that $q$ must therefore be true.

## Example:

Show that the square of an even number is an even number?
Rephrased: if n is even, then $\mathrm{n}^{2}$ is even
Solution:

- Assume n is even
- Thus, $\mathrm{n}=2 \mathrm{k}$, for some k (definition of even numbers)
- $\mathrm{n}^{2}=(2 \mathrm{k})^{2}=4 \mathrm{k}^{2}=2\left(2 \mathrm{k}^{2}\right)$
- As $\mathrm{n}^{2}$ is 2 times an integer, $\mathrm{n}^{2}$ is thus even


## 2. Indirect proofs:

Consider an implication: $p \rightarrow q$
It's contrapositive is $\neg q \rightarrow \neg p$
It is logically equivalent to the original implication.
To proof that we must show that if $\neg q$ is true, then $\neg p$ is true.
To perform an indirect proof, do a direct proof on the contrapositive.

## Example:

If $\mathrm{n}^{2}$ is an odd integer then n is an odd integer
Prove the contrapositive: If n is an even integer, then $\mathrm{n}^{2}$ is an even integer.
Proof: $\mathrm{n}=2 \mathrm{k} \quad$ for some integer k (definition of even numbers).
$\mathrm{n}^{2}=(2 \mathrm{k})^{2}=4 \mathrm{k}^{2}=2\left(2 \mathrm{k}^{2}\right)$.
Since $\mathrm{n}^{2}$ is 2 times an integer, it is even.

## 3. Proof by contradiction:

Given a statement $p$, assume it is false.
Assume $\neg p$.
Prove that $\neg p$ cannot occur.

- A contradiction exists.

Given a statement of the form $\quad p \rightarrow q$.

- To assume it's false, you only have to consider the case where $p$ is true and $q$ is false.


## Example 1

Theorem
There are infinitely many prime numbers.
Proof.
Assume there are a finite number of primes.
List them as follows: $p_{1}, p_{2} \ldots, p_{n}$.
Consider the number $q=p_{1} p_{2} \ldots p_{n}+1$

- This number is not divisible by any of the listed primes.
-If we divided $p_{i}$ into $q$, there would result a remainder of 1
- We must conclude that $q$ is a prime number, not among the primes listed above.
-This contradicts our assumption that all primes are in the list $p_{1}, p_{2} \ldots, p_{n}$.


## Example 2

Prove that if n is an integer and $\mathrm{n}^{3}+5$ is odd, then n is even.
Rephrased: If $n^{3}+5$ is odd, then $n$ is even.

## Proof

Assume $p$ is true and $q$ is false and show a contradiction.
That is if we assume $p$ and $\neg q$, we can show that implies $q$.
The contradiction is $q$ and $\neg q$.
We have follow the following steps:
Assume that $\mathrm{n}^{3}+5$ is odd, and n is odd.
$\mathrm{n}=2 \mathrm{k}+1 \quad$ for some integer k (definition of odd numbers)
$\mathrm{n}^{3}+5=(2 \mathrm{k}+1)^{3}+5=8 \mathrm{k}^{3}+12 \mathrm{k}^{2}+6 \mathrm{k}+6=2\left(4 \mathrm{k}^{3}+6 \mathrm{k}^{2}+3 \mathrm{k}+3\right)$
As $2\left(4 \mathrm{k}^{3}+6 \mathrm{k}^{2}+3 \mathrm{k}+3\right) \quad$ is 2 times an integer, it must be even Contradiction!

## 4.Counterexamples:

Every positive integer is the square of another integer.
Solution:
The square root of 5 is 2.236 , which is not an integer.

