ALMUSTAQBAL UNIVERSITY

College of Health and Medical Techniques

Medical Laboratories Techniques Department
Stage : First year students
Subject : Lecture 6A
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Chemical and ionic equilibrium:

There are two types of reactions:

1) Reversible reaction, $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

2) Irreversible reaction, $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$

$$
\mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{l})} \rightarrow \mathrm{CO}_{2} \uparrow(\mathrm{~g})+\mathrm{CaCl}_{2(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Generally, most of the chemical reactions are considered as reversible reactions.

There are two kinds of systems :
a) Homogenous reactions : chemical reactions in which the reactants and products are in the same phase (solid, liquid or gas)

$$
\begin{array}{rl}
& \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g}) \\
2 & \mathrm{KOH}(\mathrm{l})+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{l}) \rightarrow \mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{array}
$$

b) Heterogeneous reactions :

Chemical reactions in which the reactants and products have more than one phase.

$$
\mathrm{FeS}(\mathrm{~s})+\mathrm{HCl}(\mathrm{l}) \rightarrow \mathrm{FeCl}_{2}(\mathrm{l})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

Equilibrium constant (K) :

A numerical quantity that relate the concentration of reactants and products in a chemical reaction to one another.

For the chemical reaction $: ~ \mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$
According to mass action law Then:

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{f}} \alpha[\mathrm{~A}]^{\mathrm{a}},[\mathrm{~B}]^{\mathrm{b}} & (\mathrm{f}=\text { forward }) \\
\mathrm{V}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}}[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}} & \\
\mathrm{~V}_{\mathrm{b}} \alpha[\mathrm{C}]^{\mathrm{c}},[\mathrm{D}]^{\mathrm{d}} & (\mathrm{~b}=\text { backward }) \\
\mathrm{V}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}}[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}} &
\end{array}
$$

At equilibrium state : $\left(\mathrm{V}_{\mathrm{f}}=\mathrm{V}_{\mathrm{b}}\right)$
$\mathrm{K}_{\mathrm{f}}[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}=\mathrm{K}_{\mathrm{b}}[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}$
$\frac{K_{f}}{K_{b}}=\mathrm{K}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$
$\mathrm{K}=$ equilibrium constant

Example:

Write the equilibrium constant expression for each of the reversible reactions:
a. $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HF}(\mathrm{g})$
b. $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$
solution:
a. $\mathrm{K}_{\mathrm{eq}}=\frac{[\mathrm{HF}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{F}_{2}\right]}$
b. $\mathrm{Keq}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]^{2}}{\left[\mathrm{NO}_{2}\right]^{2}}$

Example:

A container holds the following mixture at equilibrium:

$$
\begin{aligned}
& {\left[\mathrm{NH}_{3}\right]=0.25 \mathrm{M} \quad\left[\mathrm{H}_{2}\right]=1.91 \mathrm{M} \quad\left[\mathrm{~N}_{2}\right]=0.11 \mathrm{M}} \\
& 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
\end{aligned}
$$

Calculate the equilibrium constant of the reaction.
Solution:
Keq $=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right]}=\frac{[0.25]^{2}}{[1.91]^{3}[0.11]}=0.082$

Exercise:
Given the equilibrium reaction: $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$
Calculate the molar concentration of I_{2} in the equilibrium mixture
Where $\quad\left[\mathrm{H}_{2}\right]=1.0 \times 10^{-2} \mathrm{M}$ and $[\mathrm{HI}]=4.0 \times 10^{-2} \mathrm{M}$ and $\mathrm{Keq}=10$.

Le chatelier principle :

The position of chemical equilibrium will always shift in a direction that tends to remove the effect of the applied stress .

Factors effecting the reactions at equilibrium :

1) Nature of reactants
2) Temperature
3) Concentration

4) Pressure (in gas reactions)

Some familiar equilibrium constant expressions :

$\mathrm{Kw}=$ ion product (or ionization) constant for water .
$\mathrm{Ksp}=$ solubility product constant.
$\mathrm{K}_{\mathrm{a}}=$ ionization (or dissociation) constant of a weak acid.
$\mathrm{K}_{\mathrm{b}}=$ ionization (or dissociation) constant of a weak base.

Ion product constant for water (Kw) :

Aqueous solutions contains small amount of hydronium ions $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and hydroxide $\left[\mathrm{OH}^{-}\right]$ions as a consequence of the dissociation reaction :

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
\end{aligned}
$$

Some of $\mathrm{H}_{2} \mathrm{O}$ molecule gives H^{+}to other $\mathrm{H}_{2} \mathrm{O}$ molecule to produce
$\mathrm{H}_{3} \mathrm{O}^{+}$ions and OH^{-}ions.
$\mathrm{K}=\frac{[\mathrm{H} 3 \mathrm{O}+\mathrm{]}] \mathrm{OH}-]}{[\mathrm{H} 2 \mathrm{O}]^{2}}$
$\mathrm{K}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{Kw}$

$$
\mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \mathrm{~mol}^{2} / \mathrm{L}^{2} \text { at } 25^{\circ} \mathrm{C}
$$

Kw is temperature dependant it increases with temperature rise, and decreases with its decrease.

Variation of Kw with temperature :

Temperature ${ }^{\circ} \mathrm{C}$	Kw
0.0	1.14×10^{-15}
25	1.01×10^{-14}
40	2.92×10^{-14}
50	5.47×10^{-14}
70	2.30×10^{-13}
100	4.90×10^{-13}

Kw is used only for water.

Example :

Calculate the hydronium $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and hydroxide ion $\left[\mathrm{OH}^{-}\right]$concentrations of pure water at $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}\left(\mathrm{Kw}=4.9 \times 10^{-13}\right)$?
solution:
Because OH^{-}and $\mathrm{H}_{3} \mathrm{O}^{+}$are formed from the dissociation of water only, then their concentrations are equal,
$2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
then : $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
$\mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
Subsititution in the above equation gives:

$$
\begin{array}{lll}
\mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2} & \text { also } & \mathrm{Kw}=\left[\mathrm{OH}^{-}\right]^{2} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{K_{w}}} & \text { and } & {\left[\mathrm{OH}^{-}\right]=\sqrt{K_{w}}}
\end{array}
$$

At $25^{\circ} \mathrm{C} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{K_{w}}=\sqrt{1.01 \times 10^{-14}}=1.01 \times 10^{-7}$
$\mathrm{pH}=-\log \left(1.01 \times 10^{-7}\right)=7.00$
$\left[\mathrm{OH}^{-}\right]=\sqrt{K_{w}}=\sqrt{1.01 \times 10^{-14}}=1.01 \times 107$
At $100^{\circ} \mathrm{C}$

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{K_{w}}=\sqrt{49 \times 10^{-14}}=7.0 \times 10^{-7}} \\
& \mathrm{pH}=-\log \left(7 \times 10^{-7}\right)=6.15
\end{aligned}
$$

$$
\left[\mathrm{OH}^{-}\right]=\sqrt{K_{w}}=\sqrt{49 \times 10^{-14}}=7.0 \times 10^{-7}
$$

Exercise:

Calculate the change in pH of pure water on heating from $25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ $\left(K w=5.47 \times 10^{-14}\right)$.

Equilibrium involving sparingly soluble ionic solids :

Most sparingly soluble salts are dissociated in saturated aqueous solution.
e.g: $\mathrm{AgCl}_{(\mathrm{s})} \rightleftharpoons \mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}$
$\mathbf{K}=\frac{[A g+][C l-]}{[\operatorname{AgCl}(s)]}$
$\mathrm{K}\left[\mathrm{AgCl}_{(\mathrm{s})}\right]=\mathrm{Ksp}=\left[\mathrm{Ag}^{+}{ }_{\mathrm{aq}}\right]\left[\mathrm{Cl}_{\mathrm{aq}}^{-}\right]$
Where Ksp = solubility product constant (applied only for saturated solution).

Example :
How many grams of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ ($487 \mathrm{~g} / \mathrm{mol}$) can be dissolved in 500 mL of water at $25^{\circ} \mathrm{C} ? \mathrm{Ksp}$ for $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}=1.57 \times 10^{-9}$.

Solution:
$\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2} \rightleftharpoons \mathrm{Ba}^{2+}+2 \mathrm{IO}_{3}{ }^{-}$
S 2S
$\mathrm{Ksp}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{IO}_{3}{ }^{-}\right]^{2}$
$K s p=(S)(2 S)^{2}=1.57 \times 10^{-9}=4 S^{3}$
$S=\sqrt[3]{\frac{1.57 \times 10^{-9}}{4}}=7.32 \times 10^{-4}$ mole $/ \mathrm{L}$ or $(\mathrm{M})=$ Solubility
No. of moles $=\frac{\text { Weight }(\mathrm{g})}{\text { Molar mass }(\mathrm{g} / \mathrm{mol})}$
Weight $=$ No. of moles \times Molar mass $(\mathrm{g} / \mathrm{mol})$
As Molarity $(M)=\frac{\text { No. of moles }}{\text { Volume }(\text { liters })}$
Then No. of moles $=$ Molarity x Volume (liters)
Substituting for the No. of moles gives:

$$
\frac{\text { Weight }(\mathrm{g})}{\text { Molar mass }(\mathrm{g} / \mathrm{mol})}=\text { Molarity } \mathrm{x} \text { Volume (liters) }
$$

Weight (g) = Molarity x Volume (liters) x Molar mass (g/mol)

Weight in grams of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}=7.32 \times 10^{-4} \mathrm{~mol} /$ liter $\times \frac{500}{1000}$ Liter x 487 g $/ \mathrm{mol}=0.178 \mathrm{~g}$

Then weight in grams of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ that is dissolved in 500 mL water $=$ 0.178 g

Example :
Calculate the weight in grams of $\mathrm{AgCl}(143.3 \mathrm{~g} / \mathrm{mol})$ that can be dissolved in 600 mL of water? Ksp for $\mathrm{AgCl}=1.8 \times 10^{-10}$.

Solution:
$\mathrm{AgCl} \quad \rightleftharpoons \quad \mathrm{Ag}^{+}+\mathrm{Cl}^{-}$
S $\quad \mathbf{S}$
$\mathbf{K s p}=\left[\mathbf{A g}^{+}\right]\left[\mathbf{C I}^{-}\right]$
$K s p=(S)(S)=1.8 \times 10^{-10}=S^{2}$
$S=\sqrt{1.8 \times 10^{-10}}=1.34 \times 10^{-5} \mathrm{~mole} / \mathrm{L}$ or $(M)=$ solubility
Weight $(\mathrm{g})=$ Molarity \mathbf{x} Volume (liters) \times Molar mass ($\mathbf{g} / \mathrm{mol}$)
Weight in grams of $\mathbf{A g C l}=1.34 \times 10^{-5} \mathrm{~mol} /$ liter $\times \frac{600}{1000}$ Liter $\times 143.32$ $\mathrm{g} / \mathrm{mol}=1.15 \times 10^{-3} \mathrm{~g}=1.15 \mathrm{mg}$

Calculating Solubility Product Constant (Ksp) From Solubility

Example:

The weight of the sparingly soluble substance $\mathrm{AgBr}(187.8 \mathrm{~g} / \mathrm{mol})$ that dissolves in 500 mL of water to form a saturated solution is $6.65 \times 10^{-5} \mathrm{~g}$. Calculate the Ksp of AgBr.
solution:
$\mathrm{AgBr} \quad \rightleftharpoons \quad \mathbf{A g}^{+}+\mathrm{Br}^{-}$

S S

S = molar solubility = Molarity
Molarity of $\operatorname{AgBr}(\mathrm{M})=\frac{w t(g) x 1000}{M . w t x \operatorname{Vml}}$
Molarity of $\operatorname{AgBr}(M)=\frac{6.65 \times 10^{-5} \times 1000}{187.8 \times 500}=7.08 \times 10^{-7}=S$
$\mathbf{K s p}=\left[\mathbf{A g}^{+}\right]\left[\mathbf{B r}^{-}\right]$
$\mathbf{K s p}=(\mathbf{S})(\mathbf{S})=\mathbf{S}^{2}$
$K s p=\left(7.08 \times 10^{-7}\right)^{2}=5.01 \times 10^{-13}$

Example:

The solubility of barium fluoride, BaF_{2}, is $7.94 \times 10^{-3} \mathrm{M}$ at $25^{\circ} \mathrm{C}$.
Calculate its solubility product constant, K_{sp},
Solution:
$\mathrm{BaF}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq})$
$\mathrm{S} \quad 2 \mathrm{~S}$

Solubility $=\left[\mathrm{Ba}^{2+}\right]=(\mathrm{S})=7.94 \times 10^{-3} \mathrm{M}$
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right][\mathrm{F}-]^{2}$
$\mathrm{K}_{\mathrm{sp}}=(\mathrm{S})(2 \mathrm{~S})^{2}=4 \mathrm{~S}^{3}$
$\mathrm{K}_{\text {sp }}=4\left(7.94 \times 10^{-3} \mathrm{M}\right)^{3}$
$\mathrm{K}_{\mathrm{sp}}=2 \times 10^{-6}$

Estimation of precipitate formation

1. If ionic product (I.P) $<$ Ksp (dissolution Occurs)
2. If ionic product (I.P) $=\mathrm{Ksp}$ (equilibrium state) saturation
3. If ionic product (I.P) >Ksp (precipitation Occurs)

Example:

Will a precipitate form when 20 mL of $0.01 \mathrm{M} \mathrm{AgNO}_{3}$ solution is mixed with 2 Liter of $0.002 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$. the Ksp for $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is 1.1×10^{-12}
$2 \mathrm{AgNO}_{3}+\mathrm{K}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4}+2 \mathrm{KNO}_{3}$
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s}) \quad \rightleftharpoons \quad 2 \mathrm{Ag}^{+}+\mathrm{CrO}_{4}{ }^{2-}$
$\mathbf{K s p}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}{ }^{2-}\right]=1.1 \times 10^{-12}$
Having AgNO_{3} gives Ag^{+}and $\mathrm{K}_{2} \mathrm{CrO}_{4}$ gives $\mathrm{CrO}_{4}{ }^{2-}$
$\mathrm{AgNO}_{3} \rightarrow \mathrm{Ag}^{+}+\mathrm{NO}_{3}^{-} \quad \mathrm{K}_{2} \mathrm{CrO}_{4} \rightarrow 2 \mathrm{~K}^{+}+\mathrm{CrO}_{4}{ }^{2-}$

To calculate the ionic product (I.P) of $[\mathrm{Ag}+]^{2}\left[\mathrm{CrO}_{4}{ }^{2-}\right]$ after mixing $\mathrm{M}_{1} \mathrm{~V}_{1}$ (before mixing) $=\mathrm{M}_{2} \mathrm{~V}_{2}$ (after mixing)
$\left[\mathrm{Ag}^{+}\right]=\frac{M 1 V 1}{V 2}=\frac{(0.01 M)(20 m L)}{(2000+20) m L}=9.9 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{CrO}_{4}{ }^{2-}\right]=\frac{M 1 V 1}{V 2}=\frac{(0.002 \mathrm{M})(2000 \mathrm{~mL})}{(2000+20) m L}=0.002 \mathrm{M}$
I.P $=[\mathrm{Ag}+]^{2}\left[\mathrm{CrO}_{4}{ }^{2-}\right]=\left(9.9 \times 10^{-5}\right)^{2}(0.002)=2.0 \times 10^{-11}$

As I.P > Ksp then precipitate will form

Example:

What pH is required to just precipitate $\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{Ksp}=4 \times 10^{-38}\right)$ from $0.1 \mathrm{M} \mathrm{FeCl}_{3}$ solution?
solution:

$$
\begin{aligned}
\mathrm{Fe}(\mathrm{OH})_{3} & \rightleftharpoons \mathrm{Fe}^{3+}+3 \mathrm{OH}^{-} \\
\mathrm{FeCl}_{3} & \rightarrow \mathrm{Fe}^{3+}+3 \mathrm{Cl}^{-}
\end{aligned}
$$

$$
\begin{aligned}
& 0.1 \mathrm{M} \quad 0.1 \mathrm{M} \\
& k s p=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}=4 \times 10^{-38} \\
& {[0.1]\left[\mathrm{OH}^{-}\right]^{3}=4 \times 10^{-38}} \\
& {\left[\mathrm{OH}^{-}\right]=\sqrt[3]{\frac{4 \times 10^{-38}}{0.1}}=7 \times 10^{-13}} \\
& \mathrm{pOH}=-\log \left(7 \times 10^{-13}\right)=12.2 \\
& \mathrm{pH}=14-12.2=1.8
\end{aligned}
$$

