ALMUSTAQBAL UNIVERSITY

College of Health and Medical Techniques

Medical Laboratories Techniques Department

Stage : First year students

Subject : Lecture 6A

Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Chemical and ionic equilibrium:

There are two types of reactions:

1) Reversible reaction, $A + B \rightleftharpoons C + D$

 $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$

2) Irreversible reaction , $A + B \rightarrow C + D$ $CaCO_{3(s)} + 2 \quad HCl_{(l)} \rightarrow CO_2\uparrow_{(g)} + CaCl_{2(s)} + H_2O_{(l)}$

Generally, most of the chemical reactions are considered as reversible reactions.

There are two kinds of systems :

a) **Homogenous reactions** : chemical reactions in which the reactants and products are in the same phase (solid , liquid or gas)

 $H_2(g) + Cl_2(g) \rightarrow 2 HCl(g)$

- 2 $KOH(1) + H_2C_2O_4(1) \rightarrow K_2C_2O_4(1) + H_2O(1)$
- b) Heterogeneous reactions :

Chemical reactions in which the reactants and products have more than one phase.

$$FeS(s) + HCl(l) \rightarrow FeCl_2(l) + H_2S(g)$$

Equilibrium constant (K) :

A numerical quantity that relate the concentration of reactants and products in a chemical reaction to one another.

For the chemical reaction : $aA + bB \rightleftharpoons cC + dD$

According to mass action law Then:

$$V_f \ \alpha \ [A]^a$$
, $[B]^b$ (f=forward)

$$V_{f} = K_{f} [A]^{a} [B]^{b}$$

 $V_{b} \alpha [C]^{c}, [D]^{d}$ (b= backward)

 $V_b = K_b [C]^c [D]^d$

At equilibrium state : ($V_f = V_b$)

$$K_{f} [A]^{a} [B]^{b} = K_{b} [C]^{c} [D]^{d}$$

$$\frac{K_f}{K_b} = \mathbf{K} = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

K = equilibrium constant

Example:

Write the equilibrium constant expression for each of the reversible reactions:

- a. $H_2(g) + F_2(g) \rightleftharpoons 2HF(g)$
- b. $2NO_2(g) \rightleftharpoons N_2(g) + 2O_2(g)$

solution:

a.
$$K_{eq} = \frac{[HF]^2}{[H_2][F_2]}$$
 b. $Keq = \frac{[N_2][O_2]^2}{[NO_2]^2}$

Example:

A container holds the following mixture at equilibrium:

$$[NH_3] = 0.25 M$$
 $[H_2] = 1.91 M$ $[N_2] = 0.11M$
 $3H_2(g) + N_2(g) \rightleftharpoons 2NH_3(g)$

Calculate the equilibrium constant of the reaction.

Solution:

Keq =
$$\frac{[NH_3]^2}{[H_2]^3[N_2]} = \frac{[0.25]^2}{[1.91]^3[0.11]} = 0.082$$

Exercise:

Given the equilibrium reaction: $2HI \rightleftharpoons H_2 + I_2$

Calculate the molar concentration of I_2 in the equilibrium mixture Where $[H_2] = 1.0 \times 10^{-2} \text{ M}$ and $[HI] = 4.0 \times 10^{-2} \text{ M}$ and Keq = 10.

Le chatelier principle :

The position of chemical equilibrium will always shift in a direction that

tends to remove the effect of the applied stress .

Factors effecting the reactions at equilibrium :

- 1) Nature of reactants
- 2) Temperature
- 3) Concentration
- 4) Pressure (in gas reactions)

Some familiar equilibrium constant expressions :

Kw = ion product (or ionization) constant for water.

Ksp = solubility product constant.

 K_a = ionization (or dissociation) constant of a weak acid.

 K_b = ionization (or dissociation) constant of a weak base.

Ion product constant for water (Kw) :

Aqueous solutions contains small amount of hydronium ions $[H_3O^+]$ and hydroxide $[OH^-]$ ions as a consequence of the dissociation reaction :

$$2 H_2O \rightleftharpoons H_3O^+ + OH^-$$
 or
 $H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-$

Some of H_2O molecule gives H^+ to other H_2O molecule to produce

 H_3O^+ ions and OH^- ions.

$$K = \frac{[H_{3}O_{+}][OH_{-}]}{[H_{2}O]^{2}}$$

K [H₂O]² = [H₃O⁺] [OH⁻] = Kw
Kw = [H₃O⁺] [OH⁻] = 1 x10⁻¹⁴ mol² / L² at 25°C

Kw is **temperature dependant** it increases with temperature rise, and decreases with its decrease.

Variation of Kw with temperature :

Temperature °C	Kw
0.0	1.14 x 10 ⁻¹⁵
25	1.01 x 10 ⁻¹⁴
40	2.92 x 10 ⁻¹⁴
50	5.47 x 10 ⁻¹⁴
70	2.30 x 10 ⁻¹³
100	4.90 x 10 ⁻¹³

Kw is used only for water.

Example :

Calculate the hydronium [H₃O⁺] and hydroxide ion [OH⁻] concentrations of pure water at 25°C and 100°C (Kw = 4.9×10^{-13})?

solution:

Because OH^- and H_3O^+ are formed from the dissociation of water only, then their concentrations are equal,

 $2 H_2 O \rightleftharpoons H_3 O^+ + OH^-$

then : $[H_3O^+] = [OH^-]$

 $Kw = [H_3O^+][OH^-]$

Substitution in the above equation gives :

Kw = $[H_3O^+]^2$ also Kw = $[OH^-]^2$ $[H_3O^+] = \sqrt{K_w}$ and $[OH^-] = \sqrt{K_w}$ At 25 °C $[H_3O^+] = \sqrt{K_w} = \sqrt{1.01 \ x \ 10^{-14}} = 1.01 \ x \ 10^{-7}$ pH= - log (1.01x10⁻⁷) = 7.00 $[OH^-] = \sqrt{K_w} = \sqrt{1.01 \ x \ 10^{-14}} = 1.01 \ x \ 10^{-7}$ At 100° C $[H_3O^+] = \sqrt{K_w} = \sqrt{49 \ x \ 10^{-14}} = 7.0 \ x \ 10^{-7}$ pH = - log (7 x 10^{-7}) = 6.15 $[OH^-] = \sqrt{K_w} = \sqrt{49 \ x \ 10^{-14}} = 7.0 \ x \ 10^{-7}$

Exercise:

Calculate the change in pH of pure water on heating from 25° C to 50° C (Kw = 5.47×10^{-14}).

Equilibrium involving sparingly soluble ionic solids :

Most sparingly soluble salts are dissociated in saturated aqueous solution.

e.g:
$$AgCl_{(s)} \rightleftharpoons Ag^+_{(aq)} + Cl^-_{(aq)}$$

$$\mathbf{K} = \frac{[Ag+][Cl-]}{[AgCl(s)]}$$

K [$AgCl_{(s)}$] = Ksp = [Ag^+_{aq}] [Cl⁻_{aq}]

Where **Ksp = solubility product constant** (applied only for saturated solution).

Example :

How many grams of $Ba(IO_3)_2$ (487 g / mol) can be dissolved in 500 mL of water at 25°C ? Ksp for $Ba(IO_3)_2 = 1.57 \times 10^{-9}$.

Solution:

 $Ba(IO_3)_2 \rightleftharpoons Ba^{2+} + 2 IO_3^{-}$

Ksp = $[Ba^{2+}][IO_3^-]^2$

$$Ksp = (S)(2S)^2 = 1.57x10^{-9} = 4S^3$$

$$S = \sqrt[3]{\frac{1.57 \times 10^{-9}}{4}} = 7.32 \times 10^{-4} \text{ mole/ L or (M)} = \text{Solubility}$$

No. of moles $=\frac{\text{Weight (g)}}{\text{Molar mass (g / mol)}}$

Weight = No. of moles x Molar mass (g / mol)

As Molarity (M) = $\frac{No. of moles}{Volume(liters)}$

Then **No. of moles** = Molarity x Volume (liters)

Substituting for the No. of moles gives:

 $\frac{\text{Weight (g)}}{\text{Molar mass (g / mol)}} = \text{Molarity x Volume (liters)}$

Weight (g) = Molarity x Volume (liters) x Molar mass (g / mol)

Weight in grams of Ba(IO₃)₂ =7.32x10⁻⁴ mol/liter x $\frac{500}{1000}$ Liter x 487 g /mol = 0.178 g

Then weight in grams of $Ba(IO_3)_2$ that is dissolved in 500 mL water = 0.178 g

Example :

Calculate the weight in grams of AgCl (143.3 g / mol) that can be dissolved in 600 mL of water ? Ksp for AgCl = 1.8×10^{-10} .

Solution:

$$AgCl \rightleftharpoons Ag^+ + Cl^-$$

 $Ksp = [Ag^+] [CI^-]$

 $Ksp = (S)(S) = 1.8x10^{-10} = S^2$

 $S = \sqrt{1.8 \times 10^{-10}} = 1.34 \times 10^{-5} \text{ mole/ L or (M)} = \text{solubility}$

Weight(g) = Molarity x Volume (liters) x Molar mass (g / mol)

Weight in grams of AgCl = 1.34×10^{-5} mol/liter x $\frac{600}{1000}$ Liter x 143.32 g/mol = 1.15×10^{-3} g = 1.15 mg

Calculating Solubility Product Constant (Ksp) From Solubility

Example:

The weight of the sparingly soluble substance AgBr (187.8 g/mol) that dissolves in 500 mL of water to form a saturated solution is 6.65×10^{-5} g. Calculate the Ksp of AgBr.

solution:

AgBr \rightleftharpoons Ag⁺ + Br⁻

S = molar solubility = Molarity Molarity of AgBr (M) = $\frac{wt (g)x 1000}{M.wt x Vml}$ Molarity of AgBr (M) = $\frac{6.65x10^{-5} x 1000}{187.8 x 500}$ = 7.08 x 10⁻⁷ = S Ksp = [Ag⁺] [Br⁻] Ksp = (S)(S) = S² Ksp = (7.08x10⁻⁷)² = 5.01 x 10⁻¹³

Example:

The solubility of barium fluoride, BaF_2 , is 7.94 x 10⁻³ M at 25 °C. Calculate its solubility product constant, K_{sp} .

Solution:

 $BaF_{2}(s) \rightleftharpoons Ba^{2+}(aq) + 2 F^{-}(aq)$ S 2S

S

S

Solubility = $[Ba^{2+}] = (S) = 7.94 \times 10^{-3} M$

 $K_{sp} = [Ba^{2+}][F^{-}]^{2}$ $K_{sp} = (S) (2 S)^{2} = 4S^{3}$ $K_{sp} = 4(7.94 \times 10^{-3} M)^{3}$ $K_{sp} = 2 \times 10^{-6}$

Estimation of precipitate formation

1. If ionic product (I.P)	<	Ksp	(dissolution Occurs)
2. If ionic product (I.P)	=	Ksp	(equilibrium state) saturation
3. If ionic product (I.P)	>	Ksp	(precipitation Occurs)

Example:

Will a precipitate form when 20 mL of 0.01 M AgNO_3 solution is mixed with 2 Liter of 0.002 M K₂CrO₄. the Ksp for Ag₂CrO₄ is 1.1 x 10⁻¹²

 $2AgNO_3 \ + \ K_2CrO_4 \ \longrightarrow \ Ag_2CrO_4 \ + \ 2 \ KNO_3$

 $Ag_2CrO_4(s) \rightleftharpoons 2Ag^+ + CrO_4^{2-}$

Ksp = $[Ag^+]^2 [CrO_4^{2-}] = 1.1 \times 10^{-12}$

Having AgNO₃ gives Ag⁺ and K₂CrO₄ gives CrO₄²⁻

 $AgNO_3 \rightarrow Ag^+ + NO_3^- \qquad K_2CrO_4 \rightarrow 2K^+ + CrO_4^{2-}$

To calculate the ionic product (I.P) of $[Ag+]^2 [CrO_4^{2-}]$ after mixing M₁V₁ (before mixing) = M₂V₂ (after mixing)

$$[Ag^{+}] = \frac{M1V1}{V2} = \frac{(0.01M)(20mL)}{(2000+20)mL} = 9.9x10^{-5} M$$

$$[CrO_{4}^{2-}] = \frac{M1V1}{V2} = \frac{(0.002M)(2000mL)}{(2000+20)mL} = 0.002 M$$

$$I.P = [Ag+]^{2} [CrO_{4}^{2-}] = (9.9x10^{-5})^{2} (0.002) = 2.0 x 10^{-11}$$

As I.P > Ksp then precipitate will form

Example:

What pH is required to just precipitate $Fe(OH)_3$ (Ksp = 4x 10⁻³⁸) from 0.1 M FeCl₃ solution?

solution:

 $Fe(OH)_3 \rightleftharpoons Fe^{3+} + 3 OH^{-}$ $FeCl_3 \longrightarrow Fe^{3+} + 3 Cl^{-}$

0.1 M 0.1 M

$$ksp = [Fe^{3+}][OH^{-}]^{3} = 4 \times 10^{-38}$$

 $[0.1][OH^{-}]^{3} = 4 \times 10^{-38}$
 $[OH^{-}] = \sqrt[3]{\frac{4 \times 10^{-38}}{0.1}} = 7 \times 10^{-13}$
 $pOH = -\log (7 \times 10^{-13}) = 12.2$
 $pH = 14 - 12.2 = 1.8$