Electricity and Magnetism

Lecture Six

Electric potential, Potential and the electric field and A group of point charges

Dr. Mohammed Hashim Abbas
Dr. Ameen Alwan
first stage
Department of medical physics

Al-Mustaqbal University-College

 2021-2022
Outline

1. Electric potential
2. Potential and the electric field
3. A group of point charges
4. References

1. Electric potential

When a test charge q^{0} is placed in an electric field E created by some other charged object, the electric force acting on the test charge is $\mathrm{q}^{0} \mathrm{E}$.

The force $\mathrm{q}_{0} \mathrm{E}$ is conservative, because the force between charges described
by Coulomb's law is conservative. If the test charge is moved in the field by some external agent from point A to point B by a displacement ds, the work done by the electric field on the charge is equal to the negative of the work done by the external agent causing the displacement.

For an infinitesimal displacement ds, the work done by the electric field on the charge is:

$$
W=\vec{F} \cdot \overrightarrow{d s} \Rightarrow W=q_{0} \vec{E} \cdot \overrightarrow{d s}
$$

As this amount of work is done by the electric field, the potential
energy of the charge field system is decreased by an amount:

$$
d U=-q_{0} \vec{E} \cdot \overrightarrow{d s}
$$

The change in potential energy of the system is:

$$
\Delta U=U_{B}-U_{A}
$$

The potential energy per unit charge $\mathrm{U} / \mathrm{q} 0$ is independent of the value of q 0 and has a value at every point in an electric field. This quantity $\mathrm{U} / \mathrm{q} 0$ is called the electric potential \mathbf{V}.

Thus, the electric potential at any point in an electric field is

(2)

Note: The fact that potential energy U is a scalar quantity means that electric potential V also is a scalar quantity.

2. Potential and the electric field

When the electric field E is directed downward as shown in Figure 1, a point B is at a lower electric potential than point A. When a positive test charge moves from point A to point B , its loses electric potential energy.

Electric field lines always point in the direction of decreasing electric potential, as shown in

Figure 1.

Now suppose that a test charge q^{0} moves from A to B. We can calculate the change in its potential energy

$\Delta U=q_{0} \Delta V=-q_{0} E d$

From this result, if $q 0$ is positive, then $\mathbf{\Delta U}$ is negative. We conclude that a positive charge loses electric potential energy when it moves in the direction of the electric field. While $q 0$ is negative, then $\Delta \mathrm{U}$ is positive and the situation is reversed: A negative charge gains electric potential energy when it moves in the direction of the electric field.

Example 1: A battery produces a specified potential difference $\boldsymbol{\Delta V}$ between conductors attached to the battery terminals. A 12 V battery is connected between two parallel plates. The separation between the plates is $\mathbf{d}=0.3 \mathrm{~cm}$. Find the magnitude of the electric field between the plates.

Solution:

$$
\begin{gathered}
E=\frac{\left|V_{B}-V_{A}\right|}{d}=\frac{12 \mathrm{~V}}{0.30 \times 10^{-2} \mathrm{~m}} \\
=4.0 \times 10^{3} \mathrm{~V} / \mathrm{m}
\end{gathered}
$$

3. A group of point charges

The potential energy U when the two particles are separated by a distance \boldsymbol{r}_{12} (see Figure 5)

$$
U=k_{e} \frac{q_{1} q_{2}}{r_{1}}
$$

(b) Find the change in potential energy of the system of two charges plus a charge $\boldsymbol{q}_{3}=\mathbf{3 . 0 0} \boldsymbol{\mu} \mathrm{C}$ as the latter charge moves from infinity to point P (Figure 6b).

Solution:

$$
\Delta U=U_{f}-U_{i}
$$

When the charge is at infinity, $\boldsymbol{U} \boldsymbol{i}=\boldsymbol{0}$, and when the charge is at $P, \boldsymbol{U}_{\boldsymbol{f}}=\boldsymbol{q}_{3} \boldsymbol{V}_{\boldsymbol{P}}$; therefore,

$$
\begin{aligned}
\Delta U=q_{3} V_{P}-0 & =\left(3.00 \times 10^{-6} \mathrm{C}\right)\left(-6.29 \times 10^{3} \mathrm{~V}\right) \\
& =-18.9 \times 10^{-3} \mathrm{~J}
\end{aligned}
$$

Fig. 6 (b)

4. Reference

Walker, Jearl, Robert Resnick, and David Halliday. Halliday and resnick fundamentals of physics. Wiley, 2014.

