ALMUSTAQBAL UNIVERSITY

College of Health and Medical Techniques

Medical Laboratories Techniques Department
Stage : First year students
Subject : Lecture 7A
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Dissociation equilibria for weak acids and bases $\left(\mathbf{K}_{\mathrm{a}} \& \mathbf{K}_{\mathbf{b}}\right)$

Weak acids

Are acids that dissociate partially in water. So when they are dissolved in water, partial dissociation occurs. for example in acetic acid solution (weak acid), most of the acid remains un dissociated, with only a small fraction dissociated and present as $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$in solution.
$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}+\mathbf{C H}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}$
The extent of dissociation is given by the equilibrium constant:
$\mathbf{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
$\mathrm{K}\left[\mathrm{H}_{2} \mathrm{O}\right]=\mathrm{Ka}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
K_{a} is an equilibrium constant and is called acid dissociation constant
The magnitude of K_{a} provides information about the relative strength of the weak acid,

The smaller k_{a} corresponding to a weaker acid.

On the opposite, small pk_{a} values characterize stronger acids

Table : The K_{a} and $\mathrm{pK} \mathrm{K}_{\mathrm{a}}$ values for a number of common weak acids

Compound (weak acid)	K_{a}	pK_{a}
Hydrocyanic acid (HCN)	4.93×10^{-10}	9.31 weakest acid
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$	1.77×10^{-5}	4.75
Benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$	6.46×10^{-5}	4.19
Formic acid $(\mathbf{H C O O H})$	1.77×10^{-4}	3.75
Salicylic acid($\left.\mathrm{HOC}_{6} \mathbf{H}_{4} \mathrm{COOH}\right)$	1.05×10^{-3}	2.98
Chloroacetic acid $\left(\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)$	1.4×10^{-3}	2.85 strongest acid

Conversions

1. To convert K_{a} to $\mathrm{pK} \mathrm{a}_{\mathrm{a}}$

$$
\mathbf{p K} \mathbf{K}_{\mathrm{a}}=-\log \mathbf{K}_{\mathrm{a}}
$$

Example:
Convert ($\mathrm{K}_{\mathrm{a}}=4.93 \times 10^{-10}$) to pK_{a}
$\mathrm{pK}_{\mathrm{a}}=-\log 4.93 \times 10^{-10}=9.31$
2. To convert pK_{a} to K_{a}

$$
\mathrm{K}_{\mathrm{a}}=10^{-\mathrm{pKa}}
$$

Example:

convert $\mathrm{pK}_{\mathrm{a}}=4.75$ to K_{a}

$$
K_{a}=10^{-4.75}=1.77 \times 10^{-5}
$$

Example:

Arrange the following weak acids : acetic acid $\left(\mathrm{pK}_{\mathrm{a}}=4.75\right)$, formic acid $\left(\mathrm{pK}_{\mathrm{a}}=3.75\right)$, and Chloroacetic acid ($\mathrm{Ka}=1.4 \times 10^{-3}$) in the order of increasing their acid strength.

Solution:

We have to convert all to Ka or to pKa which is easier and compare :
Method 1: (converting all to pKa)

$$
\mathbf{p K} \mathbf{K}_{\mathbf{a}}=-\log \mathbf{K}_{\mathbf{a}}
$$

For Chloroacetic acid $\left(\mathbf{k a}=1.4 \times 10^{-3}\right)$ then
$\mathrm{pKa}=-\log \left(1.4 \times 10^{-3}\right)=2.85$
Then

Acid pKa

Chloroacetic acid	2.85	(the strongest acid)
formic acid	3.75	
acetic acid	4.75	(the weakest acid)

As small $\mathbf{p k}_{\mathbf{a}}$ values characterize stronger acids then Chloroacetic acid is the strongest acid and acetic acid is the weakest acid .

Method 2: (converting all to Ka)

$$
\mathrm{K}_{\mathrm{a}}=\mathbf{1 0}^{-\mathrm{pKa}}
$$

For acetic acid $\mathrm{pK}_{\mathrm{a}}=4.75 \quad$ then $\quad \mathrm{Ka}=10^{-4.75}=1.77 \times 10^{-5}$

For formic acid $\mathrm{pK}_{\mathrm{a}}=3.75$ then $\mathrm{Ka}=10^{-3.75}=1.77 \times 10^{-4}$

Acid

acetic acid
formic acid
Chloroacetic acid

Ka
1.77×10^{-5} (the weakest acid)
1.77×10^{-4}
1.4×10^{-3} (the strongest acid)

As the smaller k_{a} corresponding to a weaker acid. Then acetic acid is the weakest acid and Chloroacetic acid is the strongest acid.

Exercise (Home work) :
Arrange the following weak acids : Oxalic acid ($\mathrm{pK}_{\mathrm{a}}=1.23$) , Lactic acid $\left(\mathrm{pK}_{\mathrm{a}}=3.08\right)$, Citric acid $\left(\mathrm{Ka}=7.41 \times 10^{-4}\right)$ and Ascorbic acid $\left(\mathrm{Ka}=7.94 \times 10^{-5}\right)$ in the order of decreasing their acid strength .

Calculations of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] concentration for weak acid [HA]:

$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$	
Ca_{a}		0	0 (at the beginning)
$\mathrm{Ca}_{\mathrm{a}}-\mathrm{x}$		x	x (at equilibrium)

As (x) is very small then

$$
\mathbf{C}_{\mathbf{a}}-\mathbf{x} \approx \mathbf{C}_{\mathbf{a}}=\mathbf{C}
$$

$$
\mathbf{K a}=\frac{[X][X]}{C}=\frac{X^{2}}{C}
$$

$$
\mathrm{x}=\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]
$$

$\mathbf{K a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{C}$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{K a C}
$$

Example :

Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$concentration of 0.12 M aqueous solution of Nitrous acid $\mathbf{H N O}_{2}$, ($\left.\mathrm{Ka}=5.1 \times 10^{-4}\right)$.
$\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}{ }^{-}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{\mathrm{KaC}}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{5.1 \times 10^{-4} x 0.12}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{6.12 \times 10^{-5}}=7.82 \times 10^{-3}$
$\mathrm{pH}=-\log \left(7.82 \times 10^{-3}\right)=2.11$

Weak bases

Are bases that partially dissociate in water and are characterized by base dissociation constant (\mathbf{K}_{b}).
$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-}$
w.base conjugate acid
$\mathbf{K}_{\mathbf{b}}=\frac{\left[\mathrm{OH}^{-}\right][\mathrm{BH}+]}{[\boldsymbol{B}]}$
The magnitude of ($\mathbf{K}_{\mathbf{b}}$) provides information about the relative strength of the weak base,

The smaller \mathbf{K}_{b} corresponding to a weaker base.

On the opposite, small pK_{b} values characterize stronger base.

Table : The $\mathbf{K}_{\mathbf{b}}$ and $\mathbf{p K} \mathbf{K}_{\mathbf{b}}$ values for a number of common weak bases.

Compound(weak Base)	$\mathbf{K}_{\text {b }}$	$\mathbf{p K}_{\text {b }}$
Acetamide ($\mathbf{C H}_{3} \mathrm{CONH}_{2}$)	2.5×10^{-13}	12.60 weakest Base
Glycine ($\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}$)	2.24×10^{-12}	11.65
Aniline $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	7.4×10^{-10}	9.13
Pyridine $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	1.7×10^{-9}	8.77
morphine	$7.5 \times 10-7$	6.12
Codeine($\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$)	$1.6 \times 10-6$	5.79
Ephedrine($\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ON}$)	1.3x10-4	3.88
Methylamine($\mathbf{C H}_{3} \mathbf{N H}_{2}$)	4.38×10^{-4}	3.36
Dimethylamine($\left.\mathrm{CH}_{3}\right)_{2} \mathbf{N H}$	5.4×10^{-4}	3.26 strongest Base

Conversions:

1. To convert K_{b} to $\mathbf{p K} \mathbf{b}_{b}$

$$
\mathbf{p} \mathbf{K}_{\mathbf{b}}=-\log \mathbf{K}_{\mathbf{b}}
$$

Example:
Convert ($\mathrm{K}_{\mathrm{b}}=2.54 \times 10^{-13}$) to pK_{b}
$\mathrm{pK}_{\mathrm{b}}=-\log 2.5 \times 10^{-13}=12.60$
2. To convert $\mathbf{p K}$ b to $\mathbf{K}_{\mathbf{b}}$

$$
K_{b}=10^{-\mathrm{pKb}}
$$

Example:
Convert $\mathbf{p K}_{\mathrm{b}}=4.75$ to K_{b}
$K_{b}=10^{-4.75}=1.7 \times 10^{-5}$
Exercise (Home work) : Arrange the following weak bases Glycine $\left(\mathbf{p K} K_{b}=11.65\right)$, Ephedrine $\left(\mathrm{pK}_{b}=3.88\right)$, Pyridine $\left(\mathrm{K}_{\mathrm{b}}=1.7 \times 10^{-9}\right)$ and
Dimethylamine $\left(K_{b}=5.4 \times 10^{-4}\right)$ in the order of decreasing their base strength.
Calculations of [OH^{-}] concentration for weak bases:
For weak base :
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \quad \rightleftharpoons \quad \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

C_{b}	0	0	(at the beginning)
$\mathbf{C}_{b^{-}-}$	x	x	(at equilibrium)

As (x) is very small then
$C_{b}-x \approx C_{b}=C$
$\mathbf{K a}=\frac{[X][X]}{C}=\frac{X^{2}}{C}$
$\mathbf{x}=\left[\mathrm{OH}^{-}\right]$
$\mathbf{K a}=\frac{\left[O H^{-}\right]^{2}}{C}$
$\left[\mathrm{OH}^{-}\right]=\sqrt{K_{b} C}$
Example :
Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$concentration of 0.2 M aqueous NH_{3} solution, $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$.
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
$\left[\mathrm{OH}^{-}\right]=\sqrt{K_{b} C}$
$\left[\mathrm{OH}^{-}\right]=\sqrt{1.8 \times 10^{-5} \times 0.2}=\sqrt{3.6 \times 10^{-6}}$
$\left[\mathrm{OH}^{-}\right]=1.89 \times 10^{-3}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{Kw}}{[\text { OH-] }} \quad=\frac{10^{-14}}{1.89 \times 10^{-3}}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.29 \times 10{ }^{-12}$
$\mathrm{pH}=-\log \left(5.29 \times 10{ }^{-12}\right)=11.27$
Relationship between dissociation constants for conjugate acid-base pair :
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
$\mathbf{K}_{\mathbf{b}}=\frac{[\mathrm{NH4+][OH-]}}{[\mathrm{NH} 3]}$
$\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathbf{K}_{\mathbf{a}}=\frac{[\mathrm{NH} 3][\mathrm{H} 3 \mathrm{O}+\mathrm{]}}{[\mathrm{NH} 4+]}$
Multiplication of equation (1) with (2) gives :
$\mathbf{K}_{\mathbf{b}} \mathbf{X} \mathbf{K}_{\mathbf{a}}=\quad \frac{[\mathrm{NH} 4+][\mathrm{OH}-]}{[\mathrm{NH} 3]} \mathbf{x} \quad \frac{[\mathrm{NH} 3][\mathrm{H} 3 \mathrm{O}+\mathrm{]}}{[\mathrm{NH} 4+]}$
$\mathbf{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]\left[\mathbf{O H}^{-}\right]$
but $\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]\left[\mathbf{O H}^{-}\right]=\mathbf{K}_{w}$
Therefore, $\mathbf{K}_{\mathbf{a}} \times \mathbf{K}_{\mathbf{b}}=\mathbf{K}_{\mathbf{w}}$
Exercise :
prove that for the weak acid $\mathrm{CH}_{3} \mathbf{C O O H}$ and its conjugate base $\mathbf{C H}_{3} \mathrm{COO}^{-}$ then ($\left.K_{a} \times K_{b}=K_{w}\right)$.

Hint: $\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}$[w.acid (K_{a})]
$\mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}$ [conjugate base $\left(\mathrm{K}_{\mathrm{b}}\right)$]

