ALMUSTAQBAL UNIVERSITY

College of Health and Medical Techniques Medical Laboratories Techniques Department Stage : First year students Subject : Lecture 2A Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Normality (N)

Represents the Number of milli equivalents of solute contained in one milliliter of solution or Number of equivalents contained in one liter.

e.g: 0.2 N HCl contains 0.2 milli equivalent (meq) of HCl in each mL of solution or (0.2) equivalents (eq) in liter solution .

Normality (N) = $\frac{Number of equivalents(solute)}{VL(solution)}$

Number of equivalents (eq) = $\frac{wt (gm)}{eq.wt(gm)}$

Normality (N) =
$$\frac{\frac{Wt}{eq.wt}}{\frac{V(mL)}{1000}}$$

Normality (N) = $\frac{wt \ x \ 1000}{eq.wt \ x \ V(mL)}$

Eq. =
$$\frac{Mwt}{\eta}$$

Normality (N) =
$$\frac{wt \ x \ 1000}{\frac{Mwt}{\eta} \ x \ V(mL)}$$

Normality (N) = $\frac{wt \ x \ 1000}{\frac{Mwt \ xV(mL)}{\eta}}$

Normality (N) = $\left(\frac{wt \, x 1000}{Mwt \, x \, V(mL)}\right) \eta$

 $N = M \cdot \eta$, or $M = N / \eta$

e.g: Normality(N) of 1M KCl = 1x1 = 1 N KCl , Normality(N) of 1M HCl = 1x1 = 1N HCl, Normality(N) of 1 M H₂SO₄ =2 x 1= 2N H₂SO₄ Normality(N) of 1 M Na₂ CO₃ = 2x1 = 2N Na₂CO₃

I) Equivalent mass in Neutralization reaction:

A.Equivalent mass of acids (Eq):-

Is the mass that either contribute or reacts with one mole of hydrogen ion in the reaction.

1.mono protic acid e.g: (HCl, HNO₃, CH₃COOH) η =1

Eq =
$$\frac{Mwt}{1}$$

Eq = $\frac{36.5}{1}$ = 36.5 for HCl
Eq = $\frac{63}{1}$ = 63 for HNO₃
2.Diprotic acid e.g: (H₂SO₄, H₂S, H₂SO₃) η= 2
Eq = $\frac{Mwt}{2}$ = $\frac{98}{2}$ = 49 for H₂SO₄
Eq = $\frac{82}{2}$ = 41 for H₂SO₃
B) Equivalent mass of Bases:

Is the mass that either contribute or reacts with one mole of OH in the reaction.

 $Eq = \frac{Mwt}{Number of OH}$

- 1. Mono hydroxy base e.g: $(\eta=1)$
- e.g: NaOH for KOH Eq. = $\frac{Mwt}{1} = \frac{40}{1} = 40$ Eq. = $\frac{Mwt}{1} = \frac{56}{1} = 56$ 2. Di hydroxy base (η=2) e.g: Ca(OH)₂ Zn(OH)₂ Ba(OH)₂ Eq. = $\frac{Mwt}{2} = \frac{74}{2} = 37$ Eq. = $\frac{Mwt}{2} = \frac{99.4}{2} = 49.7$ Eq. = $\frac{Mwt}{2} = \frac{171.35}{2} = 85.67$

II) Equivalent mass in (oxidation – reduction) reaction (Redox):

The equivalent mass of a participant in an (oxidation–reduction) reaction is that mass which directly produce or consume one mole of electrons.

$$\mathbf{Eq} = \frac{Mwt}{\eta} \qquad \qquad \mathbf{\eta} = \mathbf{change in oxidation state number}$$

 η = numbers of electrons participate in oxidation - reduction processes (Redox)

Example :

 $2KMnO_4 + 10FeSO_4 + 8H_2SO_4 \rightarrow 5Fe_2 (SO_4)_3 + 2MnSO_4 + K_2SO_4 + 8H_2O_4 + 8H_2O$

 MnO_4 + 10 Fe²⁺ + 8 H⁺ \rightleftharpoons 10 Fe³⁺ + MnSO₄ (acidic medium)

 $Mn^{7+} \rightarrow Mn^{2+}$ (5 e gain – reduction)

 $Fe^{2+} \rightarrow Fe^{3+}$ (1 e loss – oxidation)

Eq. of $\text{KMnO}_4 = \frac{Mwt}{5} = \frac{157.9}{5} = 31.6$

3. Equivalent mass in salts:

Eq =
$$\frac{Mwt}{\eta}$$

(η) = \sum (No. of cations x its valency)
e.g: BaCO₃ (197 g/mol)
BaCO₃ \rightarrow Ba²⁺ + CO₃²⁻
 η = Ba²⁺ (1) x (2+) =2
Eq. = $\frac{Mwt}{2} = \frac{197}{2} = 98.5$

Example

Find the Normality of the solution containing 5.3 g/L of Na₂CO₃ (106 g/mol).

Solution:

Na₂CO₃ \rightarrow 2Na⁺ + CO₃²⁻ (η) = \sum (No. of cations x its valency) (η) = 2 x 1 = 2 Eq. of Na₂CO₃ = $\frac{Mwt}{2} = \frac{106}{2} = 53 \text{ g}$ N = $\frac{wt}{Eq. x VL}$ Normality = $\frac{5.3gm}{53 x 1L} = 0.1$

Second method:

Normality (N) = $\left(\frac{wt x 1000}{Mwt x V(mL)}\right) \eta$

Normality (N) =
$$\left(\frac{5.3 \times 1000}{106 \times 1000(mL)}\right) 2 = 0.1 \text{ N}$$

e.g: KAI(SO₄)₂ (258 g/ mol)
(η) =
$$\sum$$
(No. of cations x its valency)
η = [K⁺ (1) x (1+)] +[Al³⁺(1) x (3+)] = 4
Eq. = $\frac{M.wt}{4} = \frac{258}{4} = 64.5$
e.g:
AgNO₃ (170 g/mol) , K₂CO₃ (138 g/mol) , La(IO₃)₃ (663.6g/mol)
AgNO₃ (η = Ag⁺ (1) x 1= 1)
Eq. = $\frac{Mwt}{1} = \frac{170}{1} = 170$
Eq. = $\frac{Mwt}{2} = \frac{138}{2} = 69$
La(IO₃)₃ (η = La³⁺ (1) x 3 = 3)
Eq. = $\frac{Mwt}{3} = \frac{663.6}{3} = 221.1$

Molarity of liquids:

The molarity of liquids Can be determined by applying the following formula:

Molarity of liquid(M) =
$$\frac{sp.gr x \left(\frac{w}{w}\right)\% x1000}{Mwt}$$

Specific gravity (Sp.gr) = $\frac{density \, of \, substance}{density \, of \, water} = \frac{d_{substance}}{d_{H_2O}}$

 $(\text{sp.gr} \approx d_{\text{substance}}) \text{ as } d_{\text{H}_2\text{O}} = 1$

Example:

Calculate the molarity of the solution of 70.5 % HNO_3 (w/w) (63 g/mol) that has specific gravity of (1.42).

Solution:

Molarity(M) =
$$\frac{sp.gr x \left(\frac{w}{w}\right)\% x 1000}{Mwt}$$

$$\mathbf{M} = \frac{1.42 x \left(\frac{70.5}{100}\right) x \, 1000}{63.0} = \frac{1.42 x \, 70.5 x \, 10}{63.0} = \mathbf{15.9} \ \mathbf{M}$$

Dilution:

Molarity (M) = $\frac{No.of moles (solute)}{Volume of solution(L)}$

No. of moles solute = Molarity(M) x V(L) (by rearrangement)

The amount of solute (No. of moles)does not change during dilution .

The number of moles of solute before and after dilution is unchanged, because dilution involves only the addition of extra solvent:

No. of moles (concentrated solution) = No. of moles (diluted solution)

$$\mathbf{M}_{\text{conc.}}$$
 $\mathbf{V}_{\text{conc.}}$ = $\mathbf{M}_{\text{dil.}}$ $\mathbf{V}_{\text{dil.}}$

also

 $N_{conc.} x V_{conc.} = N_{dil.} x V_{dil.}$

Example:

Describe the preparation of (100 mL) of (6.0 M) HCl from its concentrated solution that is 37.1 % (w/w) HCl (36.5 g /mole) and has specific gravity (sp.gr) of (1.181).

Solution:

$$M_{\rm HCl} = \frac{sp.gr \ x \ \left(\frac{w}{w}\right) \% \ x \ 1000}{Mwt}$$
$$M_{\rm HCl} = \frac{1.18 \ x \frac{37.1}{100} \ x \ 1000}{36.5} = \frac{1.18 \ x \ 37.1 \ x \ 10}{36.5} = 12.0 \ M$$

The Molarity of the concentrated acid is 12.0M

 $\mathbf{M}_{\text{conc.}} \mathbf{V}_{\text{conc.}} = \mathbf{M}_{\text{dil.}} \mathbf{V}_{\text{dil.}}$

 $12.0 \ge V_{conc} = 6.0 \ge 100$

$$V_{conc} = \frac{6.0 \ x \ 100}{12} = 50 \ mL.$$

Then 50 mL of concentrated acid is to be diluted to 100 mL to give 6 M solution

Exercise :

Describe the preparation of 500 mL of $2 \text{ M H}_2\text{SO}_4$ (98 g/mol) from the commercial reagent that is 93% H₂SO₄ (w/w) and has a specific gravity of 1.830.

Calculation of Normality of liquids

Normality of liquid (N) =
$$\frac{sp.gr x \left(\frac{w}{w}\right)\% x 1000}{eg.wt}$$

Example:

Describe the preparation of 500 mL of $3 \text{ N H}_2\text{SO}_4$ (98 g /mol) from the commercial reagent that is 96% H₂SO₄ (w/w) and has a specific gravity of 1.840.

Solution:

Normality (N H2SO4) = $\frac{sp.gr \times \% \times 1000}{eq.wt}$

eq.wt = $\frac{Mwt}{\eta}$

For $H_2SO_4 \eta = 2$ then

eq.wt = $\frac{98}{2}$ = 49

Normality (N _{H2SO4}) = $\frac{1.840 x \frac{96}{100} x 1000}{49}$

Normality (N _{H2SO4}) = $\frac{1.840 \times 96 \times 10}{49}$ = 36.04 N

The Normality of the concentrated acid is 36.04 N

لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (500 مللتر في هذا المثال) نطبق قانون التخفيف التالي: Nconc. Vconc. = Ndil. Vdil.

 $36.04 \text{ x V}_{\text{conc}} = 3 \text{ x } 500$

$$V_{conc} = \frac{3 \times 500}{36.04} = 41.62 \text{ mL}.$$

Then 41.62 mL of concentrated acid is to be diluted to 500 mL to give 3 N solution.

Example:

A 12.5% (w/w) aqueous solution of NiCl₂ (129.61 g/mol) has specific gravity of 1.149. Calculate:

(a) the Molarity of NiCl₂ in this solution.

(b) the molar concentration of Cl⁻ in the solution.

(c) the mass in grams of NiCl₂ contained in 500 mL of this solution.

Answer:

(a) the Molarity of NiCl₂ in this solution

$$M_{NiCl2} = \frac{sp.gr x \% x 1000}{Mwt}$$
$$M_{NiCl2} = \frac{1.149 x \frac{12.5}{100} x 1000}{129.61} = 0.569 \text{ M}$$

(b) The molarity of Cl in the solution.

NiCl₂ \longrightarrow Ni²⁺ + 2Cl⁻

Each 1 mole gives 1 mole 2 mole

Molarity of Cl⁻ = 2 x Molarity of NiCl₂

Molarity of $Cl^{-} = 2 \times 0.569 = 1.138 M$

(c) the mass in grams of NiCl₂ contained in 500 mL of this solution.

Weight (g) = Molarity x volume(liter) x M.wt Weight = $0.569 \text{ x} \left(\frac{500}{1000}\right) \text{ L x } 129.61 = 36.87 \text{ g}$

Second method: Molarity(M) = $\frac{wt_{(g)} x 1000}{M.wt x V_{mL}}$

$$wt(g) = \frac{Molarity(M) \times M.wt \times V_{mL}}{1000}$$

$$wt(g) = \frac{0.569 \text{ x } 129.6 \text{ x } 500_{\text{mL}}}{1000} = 36.87 \text{ g}$$

Exercise: A solution of 6.42 (w/w)% of Fe(NO₃)₃ (241.86 g/mol) has a specific gravity of 1.059. Calculate:

A) The Molarity and Normality of the solution

B) The mass in grams of Fe(NO₃)₃ contained in each liter of this solution

Conversions:

** Molarity(M) x 1000 = m mol/L (Molarity
$$\rightarrow$$
 mmol/L)

** m mol/L x
$$\left(\frac{Mwt}{10}\right)$$
 = mg/dL (mmol/L \rightarrow mg/dL)

$$[Molarity(M)x \ 1000] \mathbf{x} \left(\frac{\mathsf{Mwt}}{10}\right) = \mathsf{mg/dL}$$

** Molarity(M) x M.wt x 100 = mg/dL (Molarity(M) \rightarrow mg/dL)

Part per million (ppm) :

It is a convenient way to express the concentration of the very dilute solution .

 $(1 \text{ ppm} = 1 \text{ mg} / \text{liter}) \text{ or } (1 \text{ ppm} = 1 \mu \text{g} / \text{mL})$

ppm: is a mass ratio of grams of solute to one million grams of sample or solution.

$$C_{ppm} = \frac{mass \ of \ solute(g)}{mass \ of \ solution \ (g)} \ge 10^6$$

also

 $Cppm = \frac{mass \, of \, solute(mg)}{volume \, of \, solution(liter)}$

$$\mathbf{Cppm} = \frac{wt(mg)}{V(liter)} = \frac{\frac{wt(\mu g)}{1000}}{\frac{VmL}{1000}}$$

$$Cppm = \frac{wt(\mu g)}{VmL} \quad (\mu g / mL)$$

1 g = 1000 mg , $1 mg = 1000 \mu g$, $1 g = 10^{6} \mu g$

 $Cppm = \frac{wt(g)}{VmL} x \ 10^6$

Example: Prepare (500mL) of (1000 ppm) KCl aqueous solution .

solution :

Cppm =
$$\frac{wt(g)}{VmL} x \, 10^6$$
 wt_g = $\frac{C_{ppm} x V_{mL}}{10^6}$ (By rearrangement)
wt(g) = $\frac{1000 x \, 500}{10^6} = 0.5 \text{ g}$

Then 0.5 g of KCl is to be dissolved in water and the volume is completed to 500 mL in a volumetric flask to get(1000 ppm) solution.

Example :

A 25 µL serum sample was analyzed for glucose content and found to contain 26.7 µg. Calculate the concentration of glucose in ppm and in mg/dL.

Solution:

 $1 \text{ mL} = 1000 \ \mu L$ $V(\text{mL}) = \frac{V(\mu L)}{1000} = \frac{25(\mu L)}{1000} = 25 \times 10^{3} \text{ mL}$ $Cppm = \frac{wt(\mu g)}{VmL} = \frac{26.7}{25 \times 10^{-3}} = 1068 \text{ ppm}$ 1 dL = 100 mL $V(\text{dL}) = \frac{V_{mL}}{100}$ $V(\text{dL}) = \frac{V(mL)}{100} = \frac{25 \times 10^{-3} \text{ mL}}{100} = 25 \times 10^{-5} \text{ dL}$ $mg = 1000 \ \mu g$ wt (mg) = $\frac{weight(\mu g)}{1000} = weight(\mu g) \times 10^{-3}$ wt (mg) = 26.7 x 10^{-3} $Concentration (mg/dL) = \frac{wt(mg)}{V(dL)} = \frac{26.7 \times 10^{-3}}{25 \times 10^{-5}} = 106.8 \text{ mg/dL}$

يمكن ان نطبق القانون التالي بشكل مباشر :

** C (mg/dL) =
$$\frac{C_{ppm}}{10}$$

Then C $_{(mg/dL)} = \frac{1068}{10} = 106.8 \text{ mg/dL}$

Relationship of ppm with Molarity(M) and Normality (N)

ppm = M x M.wt x 1000 ppm = N x Eq.wt x 1000

Or
$$Normality(N) = \frac{PPm}{Eq.wt x1000}$$

(N) يستخدم هذا القانون لتحويل التركيز من PPm الى التركيز النورمالي (

Example:

The maximum allowed concentration of chloride (35.5 g/mol) in drinking water supply is (2500 ppm) . express this concentration in terms of mole/liter (M) ?

Solution:

 $Molarity(M) = \frac{PPm}{Mwt x1000}$ $Molarity(M) = \frac{PPm}{Mwt x1000} = \frac{2500}{35.5 \times 1000} = 7.05 \times 10^{-3} \text{ M}$ Second method: $2500 \text{ ppm} = \frac{2500 \text{ mg}}{\text{liter}}$ $Molarity(M) = \frac{\text{wt g}}{Mwt x \text{V}_{\text{I}}} = \frac{(2500 \times 10^{-3}) \text{ g}}{35.5 \times 1} = 7.05 \times 10^{-3} \text{ M}$

Conversions:

As
$$C_{(mg/dL)} = \frac{C_{ppm}}{10}$$

Then $C_{(mg/dL)} = \frac{Molarity(M)xM.wt x1000}{10}$

** C(mg/dL) = Molarity(M) x M.wt x100

Example:

For the solution of 100 ppm of Fructose (180 g/mol) Calculate the concentration in:

a. Molarity b. mmol / L c. mg/dL

Solution:

a. Molarity(M) =
$$\frac{PPm}{Mwt x 1000}$$
 = $\frac{100}{180 x 1000}$ = 5.55 x10⁻⁴ M

- b. mmol/L = Molarity(M) x 1000 = $5.55 \times 10^{-4} \times 1000 = 0.555$
- c. mg/dL = Molarity(M) x M.wt x 100

$$mg/dL = 5.55 \times 10^{-4} \times 180 \times 100 = 10$$

Or C (mg/dL) =
$$\frac{C_{ppm}}{10} = \frac{100}{10} = 10 \text{ mg/dL}$$

Exercise:

A solution was prepared by dissolving 1210 mg of $K_3Fe(CN)_6$ (329.2 g/mol) in sufficient water to give 775 mL. Calculate

- a) the molar concentration of $K_3Fe(CN)_6$. (b) pK^+ for the solution.
- c) the (w/v)% of $K_3Fe(CN)_6$ (d) the ppm concentration of $K_3Fe(CN)_6$.