ALMUSTAQBAL UNIVERSITY

College of Health and Medical Techniques

Medical Laboratories Techniques Department

Stage : First year students
Subject : Lecture 2A
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Normality (N)

Represents the Number of milli equivalents of solute contained in one milliliter of solution or Number of equivalents contained in one liter.
e.g: 0.2 N HCl contains 0.2 milli equivalent (meq) of HCl in each mL of solution or (0.2) equivalents (eq) in liter solution .
$\operatorname{Normality}(\mathrm{N})=\frac{\text { Number of equivalents(solute) }}{V L(\text { solution })}$
Number of equivalents (eq) $=\frac{w t(g m)}{e q \cdot w t(g m)}$
$\operatorname{Normality}(\mathrm{N})=\frac{\frac{w t}{e q \cdot w t}}{\frac{V(m L)}{1000}}$
$\operatorname{Normality}(\mathrm{N})=\frac{w t \times 1000}{e q . w t \times V(m L)}$
Eq. $=\frac{M w t}{\eta}$
$\operatorname{Normality}(\mathrm{N})=\frac{w t \times 1000}{\frac{M w t}{\eta} \times V(m L)}$
$\operatorname{Normality}(\mathrm{N})=\frac{w t \times 1000}{\frac{M w t \times V(m L)}{\eta}}$
$\operatorname{Normality}(\mathrm{N})=\left(\frac{w t x \mathbf{1 0 0 0}}{M w t x V(m L)}\right) \boldsymbol{\eta}$

$N=M \cdot \eta$	or $M=N / \eta$

e.g: $\operatorname{Normality}(\mathrm{N})$ of $1 \mathrm{M} \mathrm{KCl}=1 \times 1=1 \mathrm{~N} \mathrm{KCl}$,

Normality(N) of $\mathbf{1 M H C l}=1 \times 1=1 \mathrm{NHCl}$,
Normality (N) of $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}=2 \times 1=2 \mathrm{NH}_{2} \mathrm{SO}_{4}$
Normality (N) of $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}=2 \times 1=2 \mathrm{~N} \mathrm{Na} \mathrm{NO}_{3}$

I) Equivalent mass in Neutralization reaction:

A.Equivalent mass of acids (Eq):-

Is the mass that either contribute or reacts with one mole of hydrogen ion in the reaction.
1.mono protic acid e.g: $\left(\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{CH}_{3} \mathrm{COOH}\right) \quad \eta=1$
$\mathrm{Eq}=\frac{M w t}{1}$
$\mathrm{Eq}=\frac{36.5}{1}=36.5$ for HCl
$E q=\frac{63}{1}=63$ for HNO_{3}
2.Diprotic acid e.g: $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{SO}_{3}\right) \eta=2$
$\mathrm{Eq}=\frac{M w t}{2}=\frac{98}{2}=49 \quad$ for $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{Eq}=\frac{82}{2}=41$ for $\mathrm{H}_{2} \mathrm{SO}_{3}$

B) Equivalent mass of Bases:

Is the mass that either contribute or reacts with one mole of OH in the reaction.
$\mathrm{Eq}=\frac{M w t}{\text { Number of } \mathrm{OH}}$

1. Mono hydroxy base e.g: $(\eta=1)$

e.g: NaOH

Eq. $=\frac{M w t}{1}=\frac{40}{1}=40$
Eq. $=\frac{M w t}{1}=\frac{56}{1}=56$
2. Di hydroxy base $(\eta=2)$
e.g: $\mathrm{Ca}(\mathrm{OH})_{2}$

Eq. $=\frac{M w t}{2}=\frac{74}{2}=37$
Eq. $=\frac{M w t}{2}=\frac{99.4}{2}=49.7$
$\mathrm{Ba}(\mathrm{OH})_{2}$
Eq. $=\frac{M w t}{2}=\frac{171.35}{2}=85.67$

II) Equivalent mass in (oxidation - reduction) reaction (Redox):

The equivalent mass of a participant in an (oxidation-reduction) reaction is that mass which directly produce or consume one mole of electrons.
$\mathbf{E q}=\frac{M w t}{\eta}$
$\eta=$ change in oxidation state number
$\eta=$ numbers of electrons participate in oxidation - reduction processes (Redox)

Example :

$2 \mathrm{KMnO}_{4}+10 \mathrm{FeSO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{MnO}_{4}^{-}+10 \mathrm{Fe}^{2+}+\mathbf{8} \mathrm{H}^{+} \rightleftharpoons 10 \mathrm{Fe}^{3+}+\mathrm{MnSO}_{4} \quad$ (acidic medium)
$\begin{array}{lll}\mathrm{Mn}^{7+} & \rightarrow & \mathrm{Mn}^{2+}(5 \text { e gain }- \text { reduction }) \\ \mathrm{Fe}^{2+} & \rightarrow & \mathrm{Fe}^{3+}(1 \text { e loss - oxidation })\end{array}$

Eq. of $\mathrm{KMnO}_{4}=\frac{M w t}{5}=\frac{157.9}{5}=31.6$

3. Equivalent mass in salts:

$\mathrm{Eq}=\frac{M w t}{\eta}$
$(\eta)=\sum($ No. of cations x its valency $)$
e.g: $\mathrm{BaCO}_{\mathbf{3}}(\mathbf{1 9 7} \mathrm{g} / \mathrm{mol})$
$\mathrm{BaCO}_{3} \rightarrow \mathrm{Ba}^{2+}+\mathrm{CO}_{3}{ }^{2-}$
$\eta=\mathrm{Ba}^{2+}(1) \times(2+)=2$
Eq. $=\frac{M w t}{2}=\frac{197}{2}=98.5$
Example
Find the Normality of the solution containing $5.3 \mathrm{~g} / \mathrm{L}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}(106 \mathrm{~g} / \mathrm{mol})$.
Solution:
$\mathrm{Na}_{2} \mathrm{CO}_{3} \quad \rightarrow \quad 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}{ }^{2-}$
$(\eta)=\sum($ No. of cations x its valency $)$
$(\eta)=2 \times 1=2$
Eq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{M w t}{2}=\frac{\mathbf{1 0 6}}{2}=\mathbf{5 3} \mathbf{g}$
$\mathrm{N}=\frac{w t}{E q \cdot x V L}$
Normality $=\frac{5.3 \mathrm{gm}}{53 \times 1 \mathrm{~L}}=0.1$
Second method:
$\operatorname{Normality}(\mathbf{N})=\left(\frac{w t x 1000}{M w t x V(m L)}\right) \boldsymbol{\eta}$
Normality $(N)=\left(\frac{5.3 \times 1000}{106 \times 1000(m L)}\right) 2=0.1 \mathrm{~N}$
e.g: $\operatorname{KAl}\left(\mathrm{SO}_{4}\right)_{2} \quad(258 \mathrm{~g} / \mathrm{mol})$
$(\eta)=\sum($ No. of cations x its valency $)$
$\eta=\left[K^{+}(1) \times(1+)\right]+\left[\mathrm{Al}^{3+}(1) \times(3+)\right]=4$
Eq. $=\frac{M . w t}{4}=\frac{258}{4}=64.5$
e.g :
$\mathrm{AgNO}_{3}(170 \mathrm{~g} / \mathrm{mol}), \quad \mathbf{K}_{2} \mathbf{C O}_{3}(138 \mathrm{~g} / \mathrm{mol}), \quad \mathbf{L a}\left(\mathbf{I O}_{3}\right)_{3}(\mathbf{6 6 3 . 6 g} / \mathrm{mol})$
$\mathrm{AgNO}_{3}\left(\eta=\mathrm{Ag}^{+}(1) \times 1=1\right)$
$\mathrm{K}_{2} \mathrm{CO}_{3} \quad\left(\boldsymbol{\eta}=\mathrm{K}^{+}(\mathbf{2}) \times \mathbf{1}=\mathbf{2}\right)$

Eq. $=\frac{M w t}{1}=\frac{170}{1}=170$

Eq. $=\frac{M w t}{2}=\frac{138}{2}=69$
$\mathbf{L a}\left(\mathrm{IO}_{3}\right)_{3} \quad\left(\boldsymbol{\eta}=\mathbf{L a}^{\mathbf{3 +}}(\mathbf{1}) \times 3=3\right)$
Eq. $=\frac{M w t}{3}=\frac{663.6}{3}=\mathbf{2 2 1 . 1}$

Molarity of liquids:

The molarity of liquids Can be determined by applying the following formula:

Molarity of liquid($\mathbf{M})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% x 1000}{M w t}$

Specific gravity (Sp.gr) $=\frac{\text { density of substance }}{\text { density of water }}=\frac{\mathbf{d}_{\text {substance }}}{\mathbf{d}_{\mathrm{H}_{2} \mathrm{O}}}$
(sp.gr $\left.\approx \mathbf{d}_{\text {substance }}\right) \quad$ as $\mathbf{d}_{\mathbf{H}_{2} \mathbf{O}}=\mathbf{1}$

Example:

Calculate the molarity of the solution of $70.5 \% \mathrm{HNO}_{3}(\mathrm{w} / \mathrm{w})(63 \mathrm{~g} / \mathrm{mol})$ that has specific gravity of (1.42).

Solution:

$\operatorname{Molarity}(\mathbf{M})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% x 1000}{M w t}$
$M=\frac{1.42 \times\left(\frac{70.5}{100}\right) \times 1000}{63.0}=\frac{1.42 \times 70.5 \times 10}{63.0}=15.9 \mathrm{M}$

Dilution:

Molarity (M) $=\frac{\text { No.of moles (solute) })}{\text { Volume of solution }(L)}$
No. of moles solute $=\operatorname{Molarity}(\mathbf{M}) \mathbf{x} \mathbf{V}(\mathrm{L})$ (by rearrangement)
The amount of solute (No. of moles)does not change during dilution .
The number of moles of solute before and after dilution is unchanged, because dilution involves only the addition of extra solvent:

No. of moles (concentrated solution) $=$ No. of moles (diluted solution)
$\mathbf{M}_{\text {conc. }} \mathbf{V}_{\text {conc. }}=\mathbf{M}_{\text {dil. }} \mathbf{V}_{\text {dil }}$.
also
$\mathbf{N}_{\text {conc. }} \quad \mathbf{x} \quad \mathbf{V}_{\text {conc. }}=\mathbf{N}_{\text {dil. }} \times \mathbf{V}_{\text {dil }}$.

Example:

Describe the preparation of $(100 \mathrm{~mL})$ of $(6.0 \mathrm{M}) \mathbf{H C l}$ from its concentrated solution that is $37.1 \%(\mathrm{w} / \mathrm{w}) \mathrm{HCl}(36.5 \mathrm{~g} / \mathrm{mole})$ and has specific gravity (sp.gr) of (1.181) .

Solution:

$$
\begin{aligned}
& \text { 1. نحسب تركيز الحامض الاصلي (المركز) من القانون التّالي: } 1 \\
& \mathbf{M}_{\mathrm{HCl}}=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% x 1000}{M w t} \\
& \mathrm{M}_{\mathrm{HCl}}=\frac{1.18 \times \frac{37.1}{1001000}}{36.5}=\frac{1.18 \times 37.1 \times 10}{36.5}=12.0 \mathrm{M}
\end{aligned}
$$

The Molarity of the concentrated acid is $\mathbf{1 2 . 0 M}$
الان نذهب الى قانون التخفيف لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (100 مللتر في هلا المثال) وكمايلي:
$\mathbf{M}_{\text {conc. }} \mathbf{V}_{\text {conc. }}=\mathbf{M}_{\text {dil. }} \mathbf{V}_{\text {dil. }}$.
$12.0 \times V_{\text {conc }}=6.0 \times 100$

$$
V_{\text {conc }}=\frac{6.0 \times 100}{12}=50 \mathrm{~mL} .
$$

Then 50 mL of concentrated acid is to be diluted to 100 mL to give $\mathbf{6 M}$ solution

Exercise :

Describe the preparation of 500 mL of $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(98 \mathrm{~g} / \mathrm{mol})$ from the commercial reagent that is $93 \% \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{w} / \mathrm{w})$ and has a specific gravity of 1.830 .

Calculation of Normality of liquids

Normality of liquid $(\mathbf{N})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% \times 1000}{e q \cdot w t}$
Example:
Describe the preparation of 500 mL of $3 \mathrm{NH}_{2} \mathrm{SO}_{4}(98 \mathrm{~g} / \mathrm{mol})$ from the commercial reagent that is $\mathbf{9 6 \%} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathbf{w} / \mathrm{w})$ and has a specific gravity of 1.840.

Solution:
Normality ($\mathbf{N}_{\mathrm{H} 2 \mathrm{SO}}$) $=\frac{\operatorname{sp.gr} x \% \times 1000}{e q . w t}$
eq.wt $=\frac{M w t}{\eta}$
For $\mathrm{H}_{2} \mathrm{SO}_{4} \quad \mathbf{\eta}=\mathbf{2}$ then
eq.wt $=\frac{98}{2}=49$
Normality $\left(\mathbf{N}_{\text {H2SO4 }}\right)=\frac{1.840 \times \frac{96}{100} \times 1000}{49}$
Normality $\left(\mathrm{N}_{\mathrm{H} 2 \mathrm{SO}}\right)=\frac{1.840 \times 96 \times 10}{49}=36.04 \mathrm{~N}$
The Normality of the concentrated acid is $36.04 \mathbf{N}$

لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (500 مللتر في هذا المثال) نطبق قانون التخفيف التالي:
$\mathbf{N}_{\text {conc. }} \mathbf{V}_{\text {conc. }}=\mathbf{N}_{\text {dil. }} \mathbf{V}_{\text {dil }}$
$36.04 \times V_{\text {conc }}=3 \times 500$

$$
V_{c o n c}=\frac{3 \times 500}{36.04}=41.62 \mathrm{~mL}
$$

Then 41.62 mL of concentrated acid is to be diluted to 500 mL to give $\mathbf{3 N}$ solution.

Example:

A $12.5 \%(\mathrm{w} / \mathrm{w})$ aqueous solution of $\mathrm{NiCl}_{2}(129.61 \mathrm{~g} / \mathrm{mol})$ has specific gravity of 1.149 . Calculate:
(a) the Molarity of $\mathbf{N i C l}_{2}$ in this solution.
(b) the molar concentration of Cl^{-}in the solution.
(c) the mass in grams of $\mathbf{N i C l}_{2}$ contained in $\mathbf{5 0 0} \mathbf{~ m L}$ of this solution.

Answer:
(a) the Molarity of NiCl_{2} in this solution
$\mathbf{M}_{\mathrm{NiCl} 2}=\frac{\operatorname{sp.gr} x \% \times 1000}{M w t}$
$\mathrm{M}_{\mathrm{NiCl} 2}=\frac{1.149 \times \frac{12.5}{100} \times 1000}{129.61}=0.569 \mathrm{M}$
(b) The molarity of Cl in the solution.
$\mathrm{NiCl}_{2} \longrightarrow \mathrm{Ni}^{2^{+}}+2 \mathrm{Cl}^{-}$

Each 1 mole gives 1 mole 2 mole
Molarity of $\mathbf{C l}^{-}=\mathbf{2} \times$ Molarity of $\mathbf{N i C l}_{2}$
Molarity of $\mathrm{Cl}^{-}=2 \times 0.569=1.138 \mathrm{M}$
(c) the mass in grams of $\mathbf{N i C l}_{\mathbf{2}}$ contained in $\mathbf{5 0 0} \mathbf{~ m L}$ of this solution.

Weight (\mathbf{g}) = Molarity \mathbf{x} volume (liter) \mathbf{x} M.wt
Weight $=0.569 \times\left(\frac{500}{1000}\right) L \times 129.61=36.87 \mathrm{~g}$

Second method:
$\operatorname{Molarity}(M)=\frac{\mathrm{wt}_{(\mathrm{g})} \times 1000}{\mathrm{M} . \mathrm{wt} \mathbf{x} \mathrm{V}_{\mathrm{mL}}}$
$\mathbf{w t}(\mathrm{g})=\frac{\operatorname{Molarity}(\mathrm{M}) \mathrm{x} \text { M.wt x } \mathrm{V}_{\mathrm{mL}}}{\mathbf{1 0 0 0}}$
$\mathrm{wt}(\mathrm{g})=\frac{0.569 \times 129.6 \times 50 \mathrm{~m}_{\mathrm{mL}}}{1000}=36.87 \mathrm{~g}$

Exercise:
A solution of $6.42(\mathbf{w} / \mathbf{w}) \%$ of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(241.86 \mathrm{~g} / \mathrm{mol})$ has a specific gravity of $\mathbf{1 . 0 5 9}$. Calculate:
A) The Molarity and Normality of the solution
B) The mass in grams of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ contained in each liter of this solution

Conversions:

** Molarity $(\mathbf{M}) \times 1000=\mathbf{m m o l} / \mathrm{L}$
** $\mathrm{m} \mathrm{mol} / \mathrm{L} \times\left(\frac{\mathrm{Mwt}}{10}\right)=\mathrm{mg} / \mathrm{dL}$
(Molarity \rightarrow mmol/L)
$(\mathrm{mmol} / \mathrm{L} \rightarrow \mathrm{mg} / \mathrm{dL})$
$[\operatorname{Molarity}(M) x 1000] \times\left(\frac{\text { Mwt }}{10}\right)=\mathrm{mg} / \mathrm{dL}$
** Molarity $(\mathbf{M}) \times$ M.wt $\times 100=\mathrm{mg} / \mathrm{dL} \quad(\operatorname{Molarity}(\mathbf{M}) \rightarrow \mathbf{m g} / \mathrm{dL})$

Part per million (ppm) :

It is a convenient way to express the concentration of the very dilute solution .
($1 \mathbf{~ p p m}=1 \mathbf{~ m g} /$ liter $)$ or $\quad(1 \mathbf{p p m}=1 \mu \mathrm{~g} / \mathbf{m L})$
$\mathbf{p p m}$: is a mass ratio of grams of solute to one million grams of sample or solution.
$\mathrm{C}_{\mathrm{ppm}}=\frac{\text { mass of solute }(\mathrm{g})}{\text { mass of solution }(g)} \times 10^{6}$
also
$\mathrm{Cppm}=\frac{\text { mass of solute }(\mathrm{mg})}{\text { volume of solution(liter) }}$
$\mathbf{C p p m}=\frac{w t(m g)}{V(\text { liter })}=\frac{\frac{w t(\mu g)}{1000}}{\frac{V m L}{1000}}$

$$
\operatorname{Cppm}=\frac{w t(\mu g)}{V m L} \quad(\mu \mathrm{~g} / \mathrm{mL})
$$

$$
1 \mathrm{~g}=1000 \mathrm{mg} \quad, \quad 1 \mathrm{mg}=1000 \mu \mathrm{~g} \quad, \quad 1 \mathrm{~g}=10^{6} \mu \mathrm{~g}
$$

$$
\mathrm{Cppm}=\frac{w t(g)}{V m L} \times 10^{6}
$$

Example: Prepare (500 mL) of (1000 ppm) KCl aqueous solution .

solution :

$\mathbf{C p p m}=\frac{\boldsymbol{w t}(\boldsymbol{g})}{\boldsymbol{V m L}} \boldsymbol{x} \mathbf{1 0}^{6} \quad$ wt $_{\mathrm{g}}=\frac{\mathrm{C}_{\mathrm{ppm}} \times \mathrm{V}_{\mathrm{mL}}}{10^{6}} \quad$ (By rearrangement)

$$
\mathrm{wt}(\mathrm{~g})=\frac{1000 \times 500}{10^{6}}=0.5 \mathrm{~g}
$$

Then 0.5 g of KCl is to be dissolved in water and the volume is completed to 500 mL in a volumetric flask to get(1000 ppm) solution.

Example :

A $25 \mu \mathrm{~L}$ serum sample was analyzed for glucose content and found to contain $26.7 \mu \mathrm{~g}$. Calculate the concentration of glucose in ppm and in $\mathrm{mg} / \mathrm{dL}$.

Solution:

$1 \mathrm{~mL}=1000 \boldsymbol{\mu L}$
$\mathrm{V}(\mathrm{mL})=\frac{V(\mu L)}{1000}=\frac{25(\mu L)}{1000}=25 \times 10^{-3} \mathrm{~mL}$
$\mathrm{Cppm}=\frac{w t(\mu g)}{V m L}=\frac{26.7}{25 \times 10^{-3}}=1068 \mathrm{ppm}$
$1 \mathrm{dL}=100 \mathrm{~mL}$
$V(\mathrm{dL})=\frac{V_{m L}}{\mathbf{1 0 0}}$
$\mathrm{V}(\mathrm{dL})=\frac{V(m L)}{100}=\frac{25 \times 10^{-3} m L}{100}=25 \times 10^{-5} \mathrm{dL}$
$\mathrm{mg}=1000 \mu \mathrm{~g}$
$w t(\mathrm{mg})=\frac{\text { weight }(\mu g)}{1000}=$ weight $(\mu g) \times 10^{-3}$
wt $(\mathrm{mg})=26.7 \times 10^{-3}$
Concentration $(\mathrm{mg} / \mathrm{dL})=\frac{w t(m g)}{V(d L)}=\frac{26.7 \times 10^{-3}}{25 \times 10^{-5}}=106.8 \mathrm{mg} / \mathrm{dL}$

يمكن ان نطبق القانون التّالي بشكل مباشر :
${ }^{* *} \mathrm{C}_{(\mathrm{mg} / \mathrm{dL})}=\frac{C_{p p m}}{10}$
Then $C_{(m g / d L)}=\frac{1068}{10}=106.8 \mathrm{mg} / \mathrm{dL}$

Relationship of ppm with Molarity(M) and Normality (N)

ppm = M x M.wt x 1000
ppm = N x Eq.wt x 1000

$$
\operatorname{Molarity}(\mathrm{M})=\frac{P P m}{M w t \times 1000}
$$

يستخدم هذا القانون لتحويل التركيز من MPm (اللى المولاريـه(PP)

Or $\operatorname{Normality}(N)=\frac{P P m}{E q . w t \times 1000}$
يستخدم هلا القانون لتحويل التركيز من PPm (لى التركيز النورمالي (

Example:

The maximum allowed concentration of chloride ($35.5 \mathrm{~g} / \mathrm{mol}$) in drinking water supply is (2500 ppm) . express this concentration in terms of mole/liter (M)?

Solution:

$$
\mathrm{ppm}=\mathrm{mg} / \mathrm{L}
$$

$\operatorname{Molarity}(M)=\frac{P P m}{M w t x 1000}$
$\operatorname{Molarity}(M)=\frac{P P m}{M w t \times 1000}=\frac{2500}{35.5 \times 1000}=7.05 \times 10^{-3} \mathrm{M}$
Second method: $\quad 2500 \mathrm{ppm}=\frac{2500 \mathrm{mg}}{\text { liter }}$
Molarity $(\mathrm{M})=\frac{\mathrm{wt} \mathrm{g}}{\mathrm{M} . \mathrm{wt} x \mathrm{~V}_{\mathrm{L}}}=\frac{\left(2500 \times 10^{-3}\right) \mathrm{g}}{35.5 \times 1}=7.05 \times 10^{-3} \mathrm{M}$

Conversions:

As $\quad C_{(\mathrm{mg} / \mathrm{dL})}=\frac{\boldsymbol{C}_{\boldsymbol{p p m}}}{10}$
Then $\mathrm{C}_{(\mathrm{mg} / \mathrm{dL})}=\frac{\operatorname{Molarity}(M) x \text { M.wt } x 1000}{10}$
** $\mathrm{C}_{(\mathrm{mg} / \mathrm{dL})}=\operatorname{Molarity}(\mathrm{M}) \times$ M.wt $\times 100$

Example:

For the solution of 100 ppm of Fructose ($\mathbf{1 8 0} \mathrm{g} / \mathrm{mol}$) Calculate the concentration in:
a. Molarity
b. mmol / L
c. $\mathrm{mg} / \mathrm{dL}$

Solution:
a. Molarity $(M)=\frac{P P m}{M w t x 1000}=\frac{100}{180 \times 1000}=5.55 \times 10^{-4} \mathrm{M}$
b. $\mathrm{mmol} / \mathrm{L}=\operatorname{Molarity}(\mathrm{M}) \times 1000=5.55 \times 10^{-4} \times 1000=0.555$
c. $\mathbf{m g} / \mathrm{dL}=\operatorname{Molarity}(\mathrm{M}) \times \mathrm{M} . w t \times 100$
$\mathrm{mg} / \mathrm{dL}=5.55 \times 10^{-4} \times 180 \times 100=10$
$\operatorname{OrC}(\mathrm{mg} / \mathrm{dL})=\frac{\boldsymbol{C}_{\boldsymbol{p} p m}}{\mathbf{1 0}}=\frac{\mathbf{1 0 0}}{\mathbf{1 0}}=\mathbf{1 0} \mathrm{mg} / \mathrm{dL}$

Exercise:

A solution was prepared by dissolving 1210 mg of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(329.2 \mathrm{~g} / \mathrm{mol})$ in sufficient water to give 775 mL . Calculate
a) the molar concentration of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$.
(b) pK^{+}for the solution.
c) the $(\mathrm{w} / \mathrm{v}) \%$ of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$
(d) the ppm concentration of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$.

