



# **Convergent and Divergent series**

#### **Geometric Series and P-Series Test**

The tests used to determine the behavior of a Geometric and P-series follow a specific equation format. A Geometric Series is the sum of a set of terms, where each term, aann, is being multiplied by some ratio, rrnn. The Geometric Series Test compares rr with 1 to determine its behavior. A P-series is the sum of a set of terms, where the denominator of each term, n, is raised to some pp value. Similarly, the P-series Test compares pp with 1 to determin its behavior.

| Geometric Series Test                             | P-Series Test                       |  |
|---------------------------------------------------|-------------------------------------|--|
| $\sum_{n=1}^{\infty} a_1 (r)^n$                   | $\sum_{n=1}^{\infty} \frac{1}{p^n}$ |  |
| Diverges: For  r ≥1                               | Diverges: For $0$                   |  |
| Converges: For $ r  < 1$ ;<br>Converges to a1/1-r | Converges: For p > 1                |  |

#### Steps to apply:

**Step 1**: Determine the type of series given.

**Step 2:** Determine the value of rr or pp based on the type of series.

**Step 3:** Use the appropriate condition to determine its behavior.

**Step 4:** If it is a converging Geometric Series, use a1/1-r to find what it

converges to





**Example A**: Determine if the series converges or diverges. If it converges, determine where the series converges.

$$\sum_{n=1}^{\infty} 7 \left(\frac{3}{8}\right)^{n-1}$$

**Step 1:** Determine the type of series given.

The series depicts a number to the power of some nn variable. Therefore, this is considered a Geometric Series.

**Step 2:** Determine the value of rr or pp based on the type of series.

In this case, r=38 and a1=7.

**Step 3:** Use the appropriate condition to determine its behavior.

Based on the condition, |r| < 1, the given series must converge.

**Step 4:** If it is a converging Geometric Series, use a11-r to find what it converges to.

In this case,  $a1/1-r \rightarrow (7)/1-(\frac{3}{8})$ . As a result, the given series would converge to 56/5.

**Example B:** Determine if the series converges or diverges

$$\sum_{n=1}^{\infty} \frac{5}{\sqrt[2]{n^9}}$$

**Step 1:** Determine the type of series given.

The formula of a P-series is applicable if the numerator is 1.

Since the numerator is a constant, it can be factored out of the series:



اسم المادة : رياضيات اسم المددة : رياضيات المرحلة : 11 المرحلة : 2023 السنة الدراسية : 2023 عنوان المحاضرة:



$$5\sum_{n=1}^{\infty} \frac{1}{\sqrt[2]{n^9}}$$

Therefore, this series is a P-series.

**Step 2:** Determine the value of r or p based on the type of series.

The denominator,  $\sqrt[2]{n^9}$ , can be rewritten as n92; therefore, p=9/2.

**Step 3** Use the appropriate condition to determine its behavior:

Based on the condition, p>1, this series converges.

Using the P-series Test where, p=92, it can be determined that the given series converges.

#### **Divergence Test**

If the given series cannot be compared to a Geometric or P-series, then the Divergence Test should be used. During this test, there will be times where L'Hopital's Rule (LHR) will be applied when the limit is  $\infty/\infty$  or 0/0.

# **Divergence Test**

Given  $\sum_{n=1}^{\infty} a_n = 1$ :

Diverges: If  $\lim_{n\to\infty} a_n \neq 0$ 

Note: If  $\lim_{n \to \infty} a_n = 0$ , then the test is inconclusive. A different test

should be used.





Steps to apply:

**Step 1:** Find the limit as *nn* approaches infinity.

**Step 2:** Determine if the limit satisfies the test condition.

**Example A:** Determined if the series converges or diverges.

$$\sum_{n=1}^{\infty} \frac{7n^3 + 2n}{9 + 2n^2}$$

**Step 1:** Find the limit as *n* approaches infinity.  $\sum_{n=1}^{n} \frac{7n^3 + 2n}{9 + 2n^2} \rightarrow \lim_{n \to \infty} \frac{7n^3 + 2n}{9 + 2n^2}$ 

To find the limit, start by plugging in  $\infty$  for n:  $\lim_{n\to\infty} (7(\infty)3+2(\infty)/9+2(\infty)2)$ 

For more information about computing limits, refer to ACE's Limit Handout.

Because the limit is  $\infty\infty$  , LHR is applied. LHR

$$\lim_{x\to\infty} (f(x)/g(x)) = \lim_{x\to\infty} (f'(x)/g'(x))$$

In this case, f(n)/g(n)=7n3+2n/9+2n2 and through LHR this results in:

$$f'(n)/g'(n)=21n2+24n$$

Plugging in  $\infty$  for n:  $\lim_{n\to\infty} (21(\infty)2+24(\infty))$ , this results in  $\infty/\infty$  thus LHR is applied again.

In this case, f(n)/g(n)=21n2+24n and through LHR this results in:

$$f'(n)/g'(n)=42n/4$$

E-mail:





Plugging in  $\infty$  for n:  $\lim_{n\to\infty} 42(\infty)/4$ , this evaluates to  $\infty$ .

**Step 2:** Determine if the limit satisfies the test condition. Since the  $\lim_{n\to\infty} (7n3+2n/9+2n2)\neq 0$ , the series diverges

#### **Integral Test**

If the Divergence Test proves to be inconclusive, then the Integral Test should be performed. As the name suggests, this test will require the use of integration.

# **Integral Test**

Given a series:

$$\sum_{n=1}^{\infty} a_n$$

All n will be replaced with x.

If  $\int_{1}^{\infty} fx \, dx$  converges, then the series converges.

If  $\int_{1}^{\infty} fx \, dx$  diverges, then the series diverges

Converges:  $-\infty < \int_{1}^{\infty} f(x) dx < \infty$ 

Diverge:  $\int_{1}^{\infty} f(x) dx = \pm \infty$ 

**Note:** The number evaluated by the integral is not where the series converges to. [Refer to image to the right.]

# Steps to apply:

**Step 1:** Replace all n with xx.

**Step 2:** Integrate between 1 and  $\infty$ .

E-mail:





**Step 3:** Determine the series behavior based on test conditions.

**Example A:** Determine if the series converges or diverges.

**Step 1**: Replace all n with x.

$$\sum_{n=1}^{\infty} \frac{n}{(n^2+1)^3} \to \int_{1}^{\infty} \frac{x}{(x^2+1)} dx$$

**Step 2:** Integrate between 1 and  $\infty$ .

Integrate the definite integral. This will require the use of u-substitution. For more information on integration, refer to ACE's Integral Handout.

$$u=(x^{2}+1), du=2x dx$$

$$\frac{1}{2} \int_{1}^{\infty} \frac{1}{(x^{2}+1)^{3}} 2x dx \rightarrow 1/2 \int_{1}^{\infty} \frac{1}{u^{3}} du \rightarrow \frac{1}{2} \int_{1}^{\infty} u^{-3} du$$

$$\frac{1}{2} \int_{1}^{\infty} u^{-3+1} \rightarrow \frac{1}{2} \int_{1}^{\infty} \frac{-1}{2} * u^{-2} \rightarrow -\frac{1}{4} u^{-2} \Big|_{1}^{\infty} \rightarrow -\frac{1}{4} \left[ \frac{1}{u^{2}} \Big|_{1}^{\infty} \right]$$

$$-\frac{1}{4} \left[ \frac{1}{(x^{2}+1)^{2}} \Big|_{1}^{\infty} \right] \rightarrow -\frac{1}{4} \left[ 0 - \frac{1}{4} \right] = \frac{1}{16}$$

**Step 3:** Determine the series behavior based on test conditions.

The integral evaluates to 1/16 which is between  $-\infty$  and  $\infty$ , thus the integral converges. Since the integral converges, the series must also converge.





| E-mail: |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |