

اسم المادة : تقنيات رقمية اسم التدريسي :م.م علياء محد جواد المرحلة : الثانية السنة الدراسية :2023_2024 عنوان المحاظرة:Logic Gates

• The figure below shows a circuit for producing the 1's complement of an 8-bit binary number.

• The bits of the binary number are applied to the inverter inputs and the 1's complement of the number appears on the outputs.

				Logic Gates	
 The total n is determin 	umbe ned by	er of / th	f <mark>po</mark> e fo	sible combinations o owing formula:	f binary inputs to a gate
V – Z					
number of ir	nput v	aria	abl		
number of ir	nput v velop	varia the	able e tr	h table for a 3-input	AND gate
number of ir Example: De	nput v velop	varia	able e tr	h table for a 3-input	AND gate
number of ir Example: De Solution:	nput v evelop	the	able e tr _c	h table for a 3-input	AND gate
number of ir Example: De Solution:	velop	varia	able etr $\frac{c}{0}$	h table for a 3-input $\frac{x}{0}$	AND gate
number of ir Example: De Solution:	velop	the Inputs B 0 0	e tr $\frac{c}{\frac{0}{1}}$	h table for a 3-input $\frac{x}{0}$	AND gate
number of ir Example: De Solution:	velop	the Inputs B 0 1	e tr	h table for a 3-input $\frac{x}{0}$	AND gate
number of ir Example: De Solution:	velop	the Inputs B 0 1 1	e tr <u>c</u> 0 1 0 1	h table for a 3-input $\frac{x}{0}$	AND gate
number of ir Example: De Solution:	velop	the Inputs B 0 1 1 0	e tr <u>c</u> 0 1 0 1 0 1 0	h table for a 3-input	AND gate
number of ir Example: De Solution:	velop	the Inputs B 0 1 1 0 0	e tr	h table for a 3-input $\frac{x}{0}$	AND gate

			ine C	roale	
An <mark>O</mark> l	R gat	<mark>e</mark> perfor	ms what is know	wn as logical addition.	
An O	R gat	e can ha	ave two or more	inputs and one output.	
		• • • • • • •			
				$\begin{array}{c} A \\ B \end{array} \ge 1 \\ \hline X \\ \end{array}$	
			(a) Distinctive shape	(b) Rectangular outline with the $OR(x, 1)$ gualifying symbol	
			(a) Distinctive shape	(b) Rectangular outline with the OR (≥ 1) qualifying symbol	
OR G	ate Ti	ruth Tab	(a) Distinctive shape	(b) Rectangular outline with the OR (≥ 1) qualifying symbol	
OR G Truth OR g	ate Ti table for ate.	ruth Tab r a 2-input	(a) Distinctive shape	(b) Rectangular outline with the OR (≥ 1) qualifying symbol	
OR G	ate Ti table for ate.	ruth Tab r a 2-input Output	(a) Distinctive shape	(b) Rectangular outline with the OR (≥ 1) qualifying symbol	
OR G Truth OR g Inj A	ate Ti table for ate.	ruth Tab r a 2-input Output X	(a) Distinctive shape	(b) Rectangular outline with the OR (≥ 1) qualifying symbol	
OR G Truth OR g Inj A 0	ate Ti table for ate. outs $\frac{B}{0}$	ruth Tab r a 2-input	(a) Distinctive shape	(b) Rectangular outline with the OR (≥ 1) qualifying symbol	
OR G Truth OR g Inj A 0 0	ate Ti table fo ate. 	ruth Tab r a 2-input Output X 0 1	(a) Distinctive shape	(b) Rectangular outline with the OR (≥ 1) qualifying symbol	
OR G	ate Ti table fo ate. puts B 0 1 0	ruth Tab r a 2-input Output X 0 1 1	(a) Distinctive shape	(b) Rectangular outline with the OR (≥ 1) qualifying symbol	

NAND Gate

• Negative-OR Equivalent Operation of a NAND Gate

• For a 2-input NAND gate performing a negative-OR operation, output X is HIGH when either input A or input B is LOW, or when both A and B are LOW.

• Logic Expressions for a NAND Gate

• The Boolean expression for the output of a 2-input NAND gate is

X = *AB* where a bar over a variable or variables indicates an inversion.

Boolean Algebra and Logic Simplification

- Boolean algebra is the mathematics of digital logic.
- A variable is a symbol (usually an italic uppercase letter or word) used to represent an action, a condition, or data. In Boolean algebra, any single variable can have only a 1 or a 0 value.
- The **complement** is the inverse of a variable and it is indicated by a bar over the variable (overbar). For example, the complement of the variable *A* is *A*. If *A* = 1, then *A* = 0. If *A* = 0, then *A* = 1.
- The **complement** of the variable *A* is read as "not *A*" or "*A* bar." Sometimes a prime symbol rather than an overbar is used to denote the complement of a variable; for example, *A*' indicates a complement of *A*.
- A literal is a variable or the complement of a variable.

• Ru	e 11: 4	$+ \overline{AB}$	Rule	es of	f Boolean Algebra
$A + \overline{A}$	$\bar{AB} = (A + A)$ $= (AA)$ $= (AA)$ $= (A + A)$ $= 1 \cdot (A)$ $= A + A$	(AB) + AB +	\overline{AB} \overline{AB} \overline{AA} \overline{AA} + \overline{AB} B)	Rule 10: Rule 7: A Rule 8: a Factoring Rule 6: A Rule 4: d	D: $A = A + AB$: $A = AA$: adding $A\overline{A} = 0$ ing : $A + \overline{A} = 1$: drop the 1
	A 0 0 1 1	<i>B</i> 0 1 0 1 1	AB 0 1 0 0 0	$A + \overline{AB}$ 0 1 1 1 eq	$\begin{array}{c c} B & A + B \\ \hline 0 & A \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ B \\ \hline \end{array}$

Applying DeMorgan's Theorems

• Example: Apply DeMorgan's theorems to the following expression: $\overline{(A + B + C)D}$

• Solution:

Let A + B + C = X and D = Y. The expression $\overline{(A + B + C)D}$ is of the form $\overline{XY} = \overline{X} + \overline{Y}$ and can be rewritten as

 $\overline{(A+B+C)D} = \overline{A+B+C} + \overline{D}$

Next, apply DeMorgan's theorem to the term $\overline{A + B + C}$.

$$\overline{A + B + C} + \overline{D} = \overline{A}\overline{B}\overline{C} + \overline{D}$$

Applying DeMorgan's Theorems • Example: Apply DeMorgan's theorems to the following expression: $\overline{AB} + \overline{CD} + \overline{EF}$ • Solution: Let $A\overline{B} = X$, $\overline{C}D = Y$, and EF = Z. The expression $A\overline{B} + \overline{C}D + EF$ is of the form $\overline{X + Y + Z} = \overline{X}\overline{Y}\overline{Z}$ and can be rewritten as $\overline{A\overline{B} + \overline{C}D + EF} = (\overline{A\overline{B}})(\overline{\overline{C}D})(\overline{EF})$ Next, apply DeMorgan's theorem to each of the terms \overline{AB} , \overline{CD} , and \overline{EF} . $(\overline{A\overline{B}})(\overline{\overline{C}D})(\overline{EF}) = (\overline{A} + B)(C + \overline{D})(\overline{E} + \overline{F})$

Applying DeMorgan's Theorem

• Example:

• The Boolean expression for an exclusive-OR gate is *AB* + *AB*. With this as a starting point, use DeMorgan's theorems and any other rules or laws that are applicable to develop an expression for the exclusive-NOR gate.

• Solution:

Start by complementing the exclusive-OR expression and then applying DeMorgan's theorems as follows:

 $\overline{A\overline{B} + \overline{A}B} = (\overline{A\overline{B}})(\overline{\overline{A}B}) = (\overline{A} + \overline{\overline{B}})(\overline{\overline{A}} + \overline{B}) = (\overline{A} + B)(A + \overline{B})$

Next, apply the distributive law and rule 8 ($A \cdot \overline{A} = 0$).

 $(\overline{A} + B)(A + \overline{B}) = \overline{A}A + \overline{A}\overline{B} + AB + B\overline{B} = \overline{A}\overline{B} + AB$

The final expression for the XNOR is $\overline{AB} + AB$. Note that this expression equals 1 any time both variables are 0s or both variables are 1s.