

Example 8: Find the line L1 passes through the point P(1,2) and parallel the line L2: x + 2y = 3.

SOL:

- L1: **P(1,2)** M=???
- L2: x + 2y = 3.

L1 parallel the line L2 so that m1=m2.

x + 2y = 3

$$y = -1/2 X + 3/2$$

then m2 = -1/2 so that m1 = -1/2

$$y = y_1 + m(x - x_1)$$

$$y = 2 + (-\frac{1}{2})(x - 1)$$

$$y = 2 + (-\frac{1}{2}x + \frac{1}{2})$$

$$y = -\frac{1}{2}x + \frac{5}{2}$$

H.W:

Find the line L1 passes through the point (-2,2) and perpendicular to the line L2 : 2x + y = 4.

Example 9: Find the distance from the point P(2,1) to the line y = x + 2 SOL:

1- put the line in the general form Ax + By + C = 0

y = x + 2-x+y-2=0

so that A=-1, B=1, C=-2, $x_1 = 2$, $y_1 = 1$

$$d = \frac{|\mathbf{A}\mathbf{x}_1 + \mathbf{B}\mathbf{y}_1 + \mathbf{C}|}{\sqrt{A^2 + B^2}} = \frac{|-1 * (2) + 1 * (1) + (-2)|}{\sqrt{(-1)^2 + (1)^2}}$$

$$=\frac{|-3|}{\sqrt{2}}=\frac{3}{\sqrt{2}}$$

H.W:

1-Find the distance from the point P(3,2) to the line y = 3x - 4.

2-Find the distance from the point P(-4,1) to the line y = -2x + 1.

3- Find the following:

- The slope of the line 2x+3y-5=0?

- The distance from the above line to the point P(-1,0).

الدوال Functions

DEFINITION: Function

A **function** is a set D (domain) to a set R (range) is a rule that assigns to unique (single) element $f(x) \in R$ to each element $x \in D$.

 $F: X \to F(X)$ it means that f sends x to f(x)=y

- The set of x is called the "Domain" of the function (D_f).
- The set of y is called the "Range" of the function (Rf).

Domain (Df): is the set of all possible inputs (x-values). **Range (Rf):** is the set of all possible outputs (y-values).

<u>Note:</u> To find Domain (Df) and the Range (Rf) the following points must be noticed:

- 1- The denominator in a function must not equal zero (never divide by zero).
- 2- The values under even roots must be positive.

2- $y = 2x^2$ **3-** $y = \sqrt{5 - 2X}$

Definition: If F and G are functions, then we define the functions

- ✓ Sum \rightarrow (F+G)(x)=F(x)+G(x)
- ✓ Difference → (F G)(x) = F(x) G(x)
- ✓ Product → (F * G)(x) = F(x) * G(x)
- ✓ Quotient → (F / G)(x) = F(x) / G(x), where $g(x) \neq 0$

Example 1: Combining Functions Algebraically

The function defined by the formulas

 $f(x) = \sqrt{x}$ and $g(x) = \sqrt{1-x}$

Function	Formula
f + g	$(f+g)(x) = \sqrt{x} + \sqrt{1-x}$
f-g	$(f-g)(x) = \sqrt{x} - \sqrt{1-x}$
g-f	$(g-f)(x) = \sqrt{1-x} - \sqrt{x}$
fog	$(f \circ g)(x) = f(x)g(x) = \sqrt{x(1-x)} = \sqrt{x-x^2}$
$\frac{f}{g}$	$\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \sqrt{\frac{x}{1-x}}$
^g / _f	$\frac{g}{f}(x) = \frac{g(x)}{f(x)} = \sqrt{\frac{1-x}{x}}$

H.W: Combining Functions Algebraically The function defined by the formulas f(x) = 3x and $g(x) = 1 - x^2$.