Mathematics I

chapter one

1.1 Trigonometric Function

RIGHT ANGLE TRIGONOMETRY

$\sin \theta=\frac{\text { opp }}{\text { hyp }} \quad \csc \theta=\frac{\text { hyp }}{\text { opp }}$
$\cos \theta=\frac{\text { adj }}{\text { hyp }} \quad \sec \theta=\frac{\text { hyp }}{\text { adj }}$

$\tan \theta=\frac{\text { opp }}{\text { adj }}$
$\cot \theta=\frac{\text { adj }}{\text { opp }}$

TRIGONOMETRIC FUNCTIONS

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r} & \csc \theta=\frac{r}{y} \\
\cos \theta=\frac{x}{r} & \sec \theta=\frac{r}{x} \\
\tan \theta=\frac{y}{x} & \cot \theta=\frac{x}{y}
\end{array}
$$

FUNDAMENTAL IDENTITIES

$\csc \theta=\frac{1}{\sin \theta}$	$\sec \theta=\frac{1}{\cos \theta}$
$\tan \theta=\frac{\sin \theta}{\cos \theta}$	$\cot \theta=\frac{\cos \theta}{\sin \theta}$
$\cot \theta=\frac{1}{\tan \theta}$	$\sin ^{2} \theta+\cos ^{2} \theta=1$
$1+\tan ^{2} \theta=\sec ^{2} \theta$	$1+\cot ^{2} \theta=\csc ^{2} \theta$
$\sin (-\theta)=-\sin \theta$	$\cos (-\theta)=\cos \theta$
$\tan (-\theta)=-\tan \theta$	$\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta$
$\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta$	$\tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta$

Mathematics I

```
cos(A\pmB)= 林A\cdot\operatorname{cos}B\mp
sin}(A\pmB)=\operatorname{sin}A\cdot\operatorname{cos}B\pm\operatorname{cos}A\cdot\operatorname{sin}B\ldots\ldots
```

Double angle formula:

$$
\begin{aligned}
& \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \\
& \sin 2 \theta=2 \sin \theta \cdot \cos \theta
\end{aligned}
$$

1.2 Equation of circle and straight line.

Circle equation.

To find an equation of the circle with radius (r) and center $(h$, $k)$, by definition, the circle is the set of all points $P(x, y)$ whose distance from the center $C \quad(h, k)$ is r.

$$
\begin{gathered}
(x-h)^{2}+(y-k)^{2}=r^{2} \\
x^{2}+y^{2}=r^{2} \text { At the center origin point }
\end{gathered}
$$

Example 1: Find the radius and the coordinate of the center of the equation.

$$
x^{2}+y^{2}+2 x+2 y-4=0
$$

Solution//

$$
\begin{gathered}
x^{2}+2 x+1-1+y^{2}+2 y+1-1-4=0 \\
(x+1)^{2}+(y+1)^{2}=6 \leftrightarrow(x-h)^{2}+(y-k)^{2}=r^{2}
\end{gathered}
$$

Mathematics I

$$
\rightarrow h=-1, k=-1, r=\sqrt[2]{6}
$$

Equation of straight line

The equation of the line through the point (x, y) with slope(m)is:-

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

PARALLEL AND PERPENDICULAR LINES

I. Two nonvertical lines are parallel if and only if they have the same slope.
2. Two lines with slopes m_{1} and m_{2} are perpendicular if and only if $m_{1} m_{2}=-1$; that is, their slopes are negative reciprocals:

$$
m_{2}=-\frac{1}{m_{1}}
$$

Example 1: Find the equation of the line passes through the

 points $p_{1}(4,6)$ and $p_{2}(6,10)$.Solution//

$$
\begin{gathered}
m=\frac{\Delta y}{\Delta x}=\frac{10-6}{6-4}=2 \\
y-y_{1}=m\left(x-x_{1}\right) \Longleftrightarrow y-6=2(x-4) \quad \Longrightarrow y=2 x-2
\end{gathered}
$$

Example 2: Find the equation of the line tangent to the curve $y=x^{3}-3 x-3$ at the point $(0,3)$.

Solution//

$$
\begin{array}{r}
\mathrm{m}=\frac{d y}{d x}=3 x^{2}-3 \text { at }(0,3) \Longrightarrow \mathrm{m}=-3 \\
\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right) \Longrightarrow \\
\Longrightarrow \mathrm{y}-3=-3(\mathrm{x}-0) \Longrightarrow \mathrm{y}-3=-3 \mathrm{x}
\end{array}
$$

1.3 Distance from point to line

The distance between points in the plain is calculated with a formula that's comes from the Pythagorean Theorem.

$$
\begin{aligned}
& d=\sqrt{\left|x_{2}-x_{1}\right|^{2}+\left|y_{2}-y_{1}\right|^{2}} \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt{\Delta x^{2}+\Delta y^{2}}
\end{aligned}
$$

Example 1: Find the distance between the line $\mathbf{y}=3 \mathrm{x}-2$ and the point $(1,3)$.

Solution//

$$
\begin{gathered}
\mathrm{m}_{1}=3 \rightarrow \mathrm{~m}_{2}=(-1 / \mathrm{m} 1)=-1 / 3 \\
y-y_{1}= \\
m\left(x-x_{1}\right) \rightarrow y-3=-\frac{1}{3}(x-1) \\
\rightarrow y=-\frac{1}{3} x+\frac{1}{3}+3 \\
\rightarrow y=-\frac{1}{3} x+\frac{10}{3} \\
\text { At } \mathrm{y}=3 \mathrm{x}-2 \rightarrow 3 x-2=-\frac{1}{3} x+\frac{10}{3} \\
\rightarrow 9 \mathrm{x}-6=-\mathrm{x}+10 \rightarrow \mathrm{x}=\frac{8}{5} \\
\rightarrow y=-\frac{1}{3} * \frac{8}{5}+\frac{10}{3} \\
\\
\rightarrow y=\frac{14}{5} \\
d=\sqrt{(x 2-x 1)^{2}+(y 2-y 1)^{2}}
\end{gathered}
$$

$$
d=\sqrt{\left(\frac{8}{5}-1\right)^{2}+\left(\frac{14}{5}-3\right)^{2}} \rightarrow d=\frac{\sqrt{10}}{5}
$$

