
Class: 1st

Mechanical Engineering 2

Lecturer: Luay Hashem Abbud Subject: Centroid

Problem 5

Determine the coordinates of the centroid of the shaded area

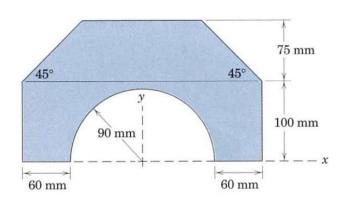
Dimensions in millimeters

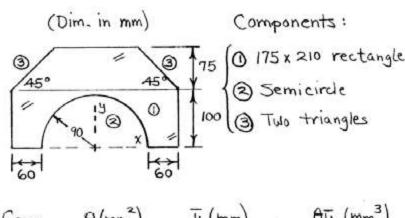
$$\frac{19}{40} = \frac{65}{40} = \frac{105}{3}$$

$$\frac{1}{40} = \frac{1}{2} (40 + 2(65) + 40) = \frac{105}{2} \frac{mm}{105}$$

$$\overline{X} = \frac{210(240)(\frac{240}{2}) - \frac{\pi 65^2}{2} \frac{4(65)}{3\pi} + \frac{\pi 105}{2}(240 + \frac{4(105)}{3\pi})$$

$$(210)(240) - \frac{\pi 65^2}{2} + \frac{\pi 105}{2}$$


$$= 176.7 mm$$


Class: 1st Mechanical Engineering 2 Lecturer: Luay Hashem Abbud

Subject: Centroid

Problem 6

Determine the y - coordinate of the centroid of the shaded area

Comp.
$$A(mm^2)$$
 $y(mm)$ $Ay(mm^3)$

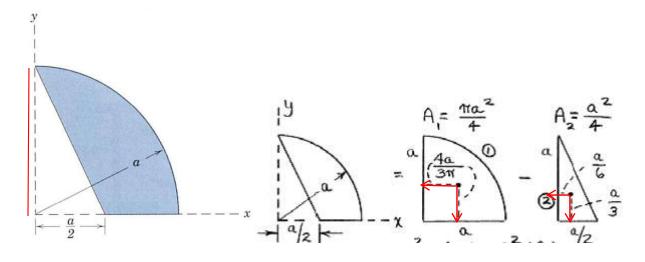
① 175(210) $\frac{175}{2}$ 3 215 625

② $-\frac{\pi (90^2)}{2}$ $\frac{4(90)}{3\pi}$ - 486 000

③ $-2\frac{1}{2}(75)(75)$ $(100+\frac{2}{3}75)$ - 843 750

 $XAy = 18400$ $XAy = 1886 000$

$$\overline{Y} = \frac{\overline{\Sigma}A\overline{y}}{\overline{\Sigma}A} = \frac{102.5 \text{ mm}}{2}$$


Class: 1st

Mechanical Engineering 2 Lecturer: Luay Hashem Abbud

Subject: Centroid

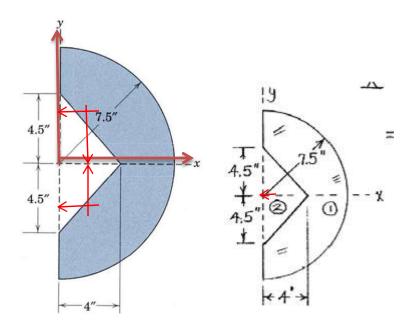
Problem 7

Determine the x and y - coordinates of the centroid of the shaded area

Parts	A	\overline{x}	\overline{y}	$\overline{\sum \overline{x}} A$	$\overline{\sum \overline{y}} A$
1	$\frac{\pi a^2}{4}$	$\frac{4a}{3\pi}$	$\frac{4a}{3\pi}$	$\frac{a^3}{3}$	$\frac{a^3}{3}$
2	$-\frac{a^2}{4}$	$\frac{a}{6}$	$\frac{a}{3}$	$-\frac{a^{3}}{24}$	$-\frac{a^{3}}{12}$
Totals	$\frac{a^2}{4}(\pi-1)$			$\frac{7a^3}{24}$	$\frac{a^3}{4}$

$$\bar{X} = \frac{\sum A \,\bar{x}}{\sum A} = \frac{\frac{7a^3}{24}}{\frac{a^2}{4}(\pi - 1)} = \frac{7a}{6(\pi - 1)}$$

$$\bar{Y} = \frac{\sum A \bar{y}}{\sum A} = \frac{\frac{a^3}{4}}{\frac{a^2}{4}(\pi - 1)} = \frac{a}{(\pi - 1)}$$


Class: 1st

Mechanical Engineering 2 Lecturer: Luay Hashem Abbud

Subject: Centroid

Problem 8

Determine the x - coordinate of the centroid of the shaded area

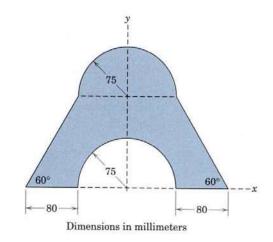
Parts	A (in²)	$\overline{x}(in)$	$\overline{y}(in)$	$\overline{\sum} \overline{x} A (in^3)$	$\overline{\sum} \overline{y} A (in^3)$
1	88.32	3.184	0	281.21	0
2	-18	1.3333	0	-24	0
Totals	70.32			257.21	0

$$A_{\text{cirecle}} = r^2 \pi / 2 = 7.5^2 * 3.14 / 2 = 88.32 \text{ in}^2$$
 , $\overline{x} = \frac{4r}{3\pi} = \frac{4*7.5}{3*3.14} = 3.184$

$$A_{\text{traingle}} = \frac{1}{2} *9 *4 = 18$$
,

$$\bar{X} = \frac{\sum A \bar{x}}{\sum A} = \frac{257.21}{70.32} = 3.66 in$$

$$\overline{Y} = \frac{\sum A \, \overline{y}}{\sum A} = 0$$


Class: 1st

Mechanical Engineering 2 Lecturer: Luay Hashem Abbud

Subject: Centroid

Problem 9

Determine the y - coordinate of the centroid of the shaded area

$$\frac{\text{Comp.}}{\text{(1)}} \frac{A \text{ (mm²)}}{150 \text{ (138.6)}} \frac{y \text{ (mm)}}{138.6/2} \frac{Ay \text{ (mm³)}}{1440 000}$$

$$\frac{2}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{$$