## Problem 5

Determine the coordinates of the centroid of the shaded area


Dimensions in millimeters


$$
\begin{aligned}
\bar{Y} & =\frac{1}{2}(40+2(65)+40)=105 \mathrm{~mm} \\
\overline{\bar{X}} & =\frac{210(240)\left(\frac{240}{2}\right)-\frac{\pi 65^{2}}{2} \frac{4(65)}{3 \pi}+\frac{\pi 105^{2}}{2}\left(240+\frac{4(105)}{3 \pi}\right)}{(210)(240)-\frac{\pi 65^{2}}{2}+\frac{\pi 105^{2}}{2}} \\
& =176.7 \mathrm{~mm}
\end{aligned}
$$

Class: $\mathbf{1}^{\text {st }}$
Mechanical Engineering 2
Lecturer: Luay Hashem Abbud
Subject: Centroid

Problem 6
Determine the y -coordinate of the centroid of the shaded area


$$
\overline{\bar{Y}}=\frac{\sum A \bar{y}}{\sum A}=102.5 \mathrm{~mm}
$$

Class: ${ }^{\text {st }}$
Mechanical Engineering 2

## Lecturer: Luay Hashem Abbud

Subject: Centroid

## Problem 7

Determine the x and y - coordinates of the centroid of the shaded area


| Parts | $\mathbf{A}$ | $\overline{\boldsymbol{x}}$ | $\overline{\boldsymbol{y}}$ | $\overline{\sum \overline{\boldsymbol{x}} \boldsymbol{A}}$ | $\overline{\sum \overline{\boldsymbol{y}} \boldsymbol{A}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\frac{\pi a^{2}}{4}$ | $\frac{4 a}{3 \pi}$ | $\frac{4 a}{3 \pi}$ | $\frac{a^{3}}{3}$ | $\frac{a^{3}}{3}$ |
| $\mathbf{2}$ | $-\frac{a^{2}}{4}$ | $\frac{a}{6}$ | $\frac{a}{3}$ | $-\frac{a^{3}}{24}$ | $-\frac{a^{3}}{12}$ |
| Totals | $\frac{\boldsymbol{a}^{\mathbf{2}}}{\mathbf{4}}(\boldsymbol{\pi}-\mathbf{1})$ |  |  | $\frac{\mathbf{7 \boldsymbol { a } ^ { 3 }}}{\mathbf{2 4}}$ | $\frac{\boldsymbol{a}^{\mathbf{3}}}{\mathbf{4}}$ |

$\bar{X}=\frac{\sum A \bar{x}}{\sum A}=\frac{\frac{7 a^{3}}{24}}{\frac{a^{2}}{4}(\pi-1)}=\frac{7 a}{6(\pi-1)}$
$\bar{Y}=\frac{\sum A \bar{y}}{\sum A}=\frac{\frac{a^{3}}{4}}{\frac{a^{2}}{4}(\pi-1)}=\frac{a}{(\pi-1)}$

## Lecturer: Luay Hashem Abbud <br> Subject: Centroid

## Problem 8

Determine the x - coordinate of the centroid of the shaded area


| Parts | A ( $\mathrm{in}^{2}$ ) | $\overline{\boldsymbol{x}}$ (in) | $\overline{\boldsymbol{y}}$ (in) | $\overline{\sum \bar{x}} \boldsymbol{A}\left(\right.$ in $\left.^{3}\right)$ | $\overline{\sum \bar{y}} \boldsymbol{A}\left(\boldsymbol{i n}^{3}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 88.32 | 3.184 | 0 | 281.21 | 0 |
| 2 | -18 | 1.3333 | 0 | -24 | 0 |
| Totals | 70.32 |  |  | 257.21 | 0 |

$\mathrm{A}_{\text {cirecle }}=\mathrm{r}^{2} \pi / 2=7.5^{2} * 3.14 / 2=88.32 \mathrm{in}^{2} \quad, \bar{x}=\frac{4 r}{3 \pi}=\frac{4 * 7.5}{3 * 3.14}=3.184$
$A_{\text {traingle }}=1 / 2 * 9 * 4=18$,
$\bar{X}=\frac{\sum A \bar{x}}{\sum A}=\frac{257.21}{70.32}=3.66 \mathrm{in}$
$\bar{Y}=\frac{\sum A \bar{y}}{\sum A}=0$

## Lecturer: Luay Hashem Abbud <br> Subject: Centroid

## Problem 9

Determine the y - coordinate of the centroid of the shaded area


