Problem 4

Determine the x and y - coordinates of the centroid of the shaded area

Solution

$$
\begin{aligned}
& \quad d A=y d x=\left(1+\frac{x^{3}}{8}\right) d x \\
& A=\int d A=\int_{1}^{2}\left(1+\frac{x^{3}}{8}\right) d x \\
& =\left.\left(x+\frac{x^{4}}{32}\right)\right|_{1} ^{2}=\frac{47}{32} \\
& \int y_{c} d A=\int \frac{x^{3}}{2} y d x=\frac{1}{2} \int_{c}^{2} d A=\int_{1}^{2} x\left(1+\frac{x^{3}}{8}\right) d x \\
& =\frac{1}{2} \int_{1}^{2}\left(1+\frac{x^{3}}{8}\right)^{2} d x=\frac{1}{2} \int_{1}^{2}\left(1+\frac{x^{3}}{4}+\frac{x^{6}}{64}\right) d x \\
& =\left.\frac{1}{2}\left(x+\frac{x^{4}}{16}+\frac{x^{5}}{448}\right)\right|_{1} ^{2}=\frac{995}{89}
\end{aligned}
$$

So

$$
\begin{aligned}
& \bar{x}=\frac{\int x_{c} d A}{\int d A}=\frac{91 / 40}{47 / 32}=1.549 \\
& \bar{y}=\frac{\int y_{c} d A}{\int d A}=\frac{995 / 896}{47 / 32}=0.756
\end{aligned}
$$

Class: $\mathbf{1}^{\text {st }}$

Problem 5
Determine the x and y - coordinates of the centroid of the shaded area

Solution

$$
\begin{aligned}
& \begin{array}{l}
A=\int x d y=\int_{1}^{4} \sqrt{5(5-y)} d y \\
=\sqrt{5}\left(-\frac{2}{3}[5-y]^{3 / 2}\right)_{1}^{4}=\frac{14 \sqrt{5}}{3} \\
\frac{1}{1 d y} \int x_{c} d A=\int_{1}^{4} \frac{x}{2} x d y=\int_{1}^{4} \frac{x^{2}}{2}(5-y) d y \\
=\frac{5}{2}\left(5 y-\frac{y^{2}}{2}\right)_{1}^{4}=\frac{75}{4} \\
\frac{x}{5} x
\end{array} \\
& \bar{x}=\frac{1}{A} \int x_{c} d A=\frac{75 / 4}{14 \sqrt{5} / 3}=1.797 \\
& \int y_{c} d A=\int_{1}^{4} y x d y=\int_{1}^{4} y \sqrt{5(5-y)} d y \\
& =\left.\sqrt{5}\left(-\frac{2}{15}\right)(3 y+10)(5-y)^{3 / 2}\right|_{1} ^{4}=\frac{164 \sqrt{5}}{15} \\
& \bar{y}=\frac{1}{A} \int y_{c} d A=\frac{164 \sqrt{5} / 15}{14 \sqrt{5} / 3}=2.34
\end{aligned}
$$

Class: ${ }^{\text {st }}$

Problem 6
Determine the x and y - coordinates of the centroid of the shaded area

Solution

$$
\begin{aligned}
b & =k a^{2}, k=\frac{b}{a^{2}}, x=\frac{b}{a^{2}} y \\
A & =\int x d y=\int_{0}^{a} \frac{b}{a^{2}} y^{2} d y \\
& =\frac{b}{a^{2}} \frac{a^{3}}{3}=\frac{1}{3} a b
\end{aligned}
$$

$$
\begin{aligned}
& \int x_{c} d A=\int \frac{x}{2} x d y=\int_{0}^{a} \frac{b^{2} y^{4}}{2 a^{4}} d y=\frac{a b^{2}}{10} \\
& \bar{x}=\int x_{c} d A / A=\frac{a b^{2} / 10}{a b / 3}=\frac{3}{10} b \\
& \int y_{c} d A=\int y x d y=\int_{0}^{a} y \frac{b}{a^{2} y^{2} d y=\frac{b a^{2}}{4}} \\
& \bar{y}=\int y_{c} d A / A=\frac{b a^{2} / 4}{b a / 3}=\frac{3}{4} a
\end{aligned}
$$

Problem 7

Locate the centroid of the shaded area between the two curves

Solution

$$
\left.\begin{array}{rl}
x=y_{2}^{2} / 2
\end{array} \quad A=\int d A=\int_{0}^{2}\left(y_{2}-y_{1}\right) d x=\int_{0}^{2}\left(\sqrt{2 x}-\frac{x^{3}}{4}\right) d x\right]=\left(\frac{2 \sqrt{2}}{3} x^{3 / 2}-\frac{x^{4}}{16}\right)_{0}^{2}=5 / 30
$$

Problem 8

Determine the x and y - coordinates of the centroid of the shaded area

Solution

$$
\begin{aligned}
& y \left\lvert\, x d x \quad A=\int y d x=\int_{0}^{a} b \sin \frac{\pi x}{2 a} d x\right.
\end{aligned}
$$

$$
\begin{aligned}
& \int x_{c} d A=\int_{0}^{a} x y d x=\int_{0}^{a} b x \sin \frac{\pi x}{2 a} d x \\
& =b\left(\frac{2 a}{\pi}\right)^{2}\left[\sin \frac{\pi x}{2 a}-\frac{\pi x}{2 a} \cos \frac{\pi x}{2 a}\right]_{0}^{a} \\
& =4 a^{2} b / \pi^{2} \\
& \bar{x}=\frac{\int x_{c} d A}{A}=\frac{4 a^{2} b / \pi^{2}}{2 a b / \pi}=\frac{2 a}{\pi^{2}} \\
& \int y_{c} d A=\int_{0}^{a} \frac{y}{2} y d x=\frac{b^{2}}{2} \int_{0}^{a} \sin ^{2} \frac{\pi x}{2 a} d x \\
& =\frac{a b^{2}}{\pi}\left[\frac{\pi x}{4 a}-\frac{1}{4} \sin \frac{\pi x}{a}\right]_{0}^{a}=\frac{a b^{2}}{4} \\
& \bar{y}=\frac{\int y_{c} d A}{A}=\frac{a b^{2} / 4}{2 a b / \pi}=\frac{\pi b}{8}
\end{aligned}
$$

Problem 9

Determine the x and y - coordinates of the centroid of the shaded area

Solution

$$
\begin{aligned}
& \begin{aligned}
& d x i(x, y)=(a, b) A=\int_{0}^{a}\left(y_{2}-y_{1}\right) d x \\
&=\int_{0}^{a}\left(b \sqrt{\frac{x}{a}}-x \frac{b}{a}\right) d x \\
&=b\left[\frac{1}{\sqrt{a}} \frac{2 x^{3 / 2}}{3}-\frac{1}{2 a} x^{2}\right]_{0}^{a} \\
& y_{2}
\end{aligned} \\
& \int x_{c} d A=\int_{0}^{a} x\left(y_{2}-y_{1}\right) d x=\int_{5 / 2}^{a}\left[\frac{b}{\sqrt{a}} x^{3 / 2}-\frac{b}{a} x^{2}\right] d x \\
& =b\left[\frac{2 x^{5 / 2}}{5 \sqrt{a}}-\frac{x^{3}}{3 a}\right]_{0}^{a}=\frac{a^{2} b}{15} \\
& \bar{x}=\frac{\int x_{c} d A}{A}=\frac{a b^{2} / 15}{a b / 6}=\frac{2}{5} a \\
& \int y_{c} d A=\int_{0}^{a}\left(\frac{y_{1}+y_{2}}{2}\right)\left(y_{2}-y_{1}\right) d x=\frac{1}{2} \int_{0}^{a}\left(y_{2}^{2}-y_{1}^{2}\right) d x \\
& =\frac{1}{2} \int_{0}^{a}\left(\frac{x b^{2}}{a}-\frac{x^{2} b^{2}}{a^{2}}\right) d x=\frac{1}{12} a b^{2} \\
& \bar{y}=\frac{\int y_{c} d A}{A}=\frac{a b^{2} / 12}{a b / 6}=\frac{b}{2}
\end{aligned}
$$

