

1 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

 وم ــل ــع كــــــــلــيــة الــــ

 ة ـــيـــ ـــذك ـــة ال ـي ـب ـطـ ـــة الـ ـــم ـ ـــظ ـــم الان ـــــــ ـــس ــق

Intelligent Medical Systems Department

Lecture: (3)

Queue in Python

Subject: Data Structure Lab.
Class: Second
Lecturer: Asst. Prof. Mehdi Ebady Manaa
 Asst. Lec. Sajjad Ibrahim Ismael

2 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

Queue in Python

Like stack, queue is a linear data structure that stores items in First In First Out
(FIFO) manner. With a queue the least recently added item is removed first. A
good example of queue is any queue of consumers for a resource where the
consumer that came first is served first.

Operations associated with queue are :

• Enqueue: Adds an item to the queue. If the queue is full, then it is said to
be an Overflow condition – Time Complexity : O (1)

• Dequeue: Removes an item from the queue. The items are popped in the
same order in which they are pushed. If the queue is empty, then it is
said to be an Underflow condition – Time Complexity : O (1)

• Front: Get the front item from queue – Time Complexity : O (1)
• Rear: Get the last item from queue – Time Complexity : O(1)

Implementation
There are various ways to implement a queue in Python. this lecture
covers the implementation of queue using data structures and modules
from Python library.

3 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

Queue in Python can be implemented by the following ways:
• list
• collections.deque
• queue.Queue

Implementation using list:
List is a Python’s built-in data structure that can be used as a queue. Instead of
enqueue() and dequeue(), append() and pop() function is used. However, lists
are quite slow for this purpose because inserting or deleting an element at the
beginning requires shifting all of the other elements by one, requiring O(n)
time.

Python program to demonstrate queue implementation using list
Initializing a queue
queue = []

Adding elements to the queue
queue.append('a')
queue.append('b')
queue.append('c')

print("Initial queue")
print(queue)

Removing elements from the queue
print("\nElements dequeued from queue")
print(queue.pop(0))
print(queue.pop(0))
print(queue.pop(0))

print("\nQueue after removing elements")
print(queue)

Uncommenting print(queue.pop(0)) will raise and IndexError as the queue is now

empty

Output
Initial queue

4 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

['a', 'b', 'c']

Elements dequeued from queue

a

b

c

Queue after removing elements

[]

Implementation using collections.deque:

Queue in Python can be implemented using deque class from the collections
module. Deque is preferred over list in the cases where we need quicker
append and pop operations from both the ends of container, as deque provides
an O(1) time complexity for append and pop operations as compared to list
which provides O(n) time complexity. Instead of enqueue and deque, append()
and popleft() functions are used.

Python program to demonstrate queue implementation using collections.dequeue

from collections import deque

Initializing a queue
q = deque()

Adding elements to a queue
q.append('a')
q.append('b')
q.append('c')

print("Initial queue")
print(q)

5 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

Removing elements from a queue
print("\nElements dequeued from the queue")
print(q.popleft())
print(q.popleft())
print(q.popleft())

print("\nQueue after removing elements")
print(q)

Uncommenting q.popleft() will raise an IndexError as queue is now empty

Output
Initial queue

deque(['a', 'b', 'c'])

Elements dequeued from the queue

a

b

c

Queue after removing elements

deque([])

Implementation using queue.Queue
Queue is built-in module of Python which is used to implement a queue.
queue.Queue(maxsize) initializes a variable to a maximum size of maxsize. A
maxsize of zero ‘0’ means a infinite queue. This Queue follows FIFO rule.
There are various functions available in this module:

• maxsize – Number of items allowed in the queue.
• empty() – Return True if the queue is empty, False otherwise.

6 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

• full() – Return True if there are maxsize items in the queue. If the queue
was initialized with maxsize=0 (the default), then full() never returns
True.

• get() – Remove and return an item from the queue. If queue is empty,
wait until an item is available.

• get_nowait() – Return an item if one is immediately available, else raise
QueueEmpty.

• put(item) – Put an item into the queue. If the queue is full, wait until a
free slot is available before adding the item.

• put_nowait(item) – Put an item into the queue without blocking. If no
free slot is immediately available, raise QueueFull.

• qsize() – Return the number of items in the queue.qsize() – Return the
number of items in the queue.

Python program to demonstrate implementation of queue using queue module

from queue import Queue

Initializing a queue
q = Queue(maxsize = 3)

qsize() give the maxsize
of the Queue
print(q.qsize())

Adding of element to queue
q.put('a')
q.put('b')
q.put('c')

Return Boolean for Full
Queue
print("\nFull: ", q.full())

Removing element from queue
print("\nElements dequeued from the queue")
print(q.get())
print(q.get())

7 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

print(q.get())

Return Boolean for Empty Queue
print("\nEmpty: ", q.empty())

q.put(1)
print("\nEmpty: ", q.empty())
print("Full: ", q.full())

This would result into Infinite Loop as the Queue is empty. print(q.get())

Output
0

Full: True

Elements dequeued from the queue

a

b

c

Empty: True

Empty: False

Full: False

