

Centrifugal Tension

$m=$ Mass of belt per unit length in kg,
$v=$ Linear velocity of belt in m / s,
$r=$ Radius of pulley over which the belt runs in metres, and
$T_{\mathrm{C}}=$ Centrifugal tension acting tangentially at P and Q in newtons.

$$
T_{\mathrm{C}}=m \cdot v^{2}
$$

Notes: 1. When centrifugal tension is taken into account, then total tension in the tight side,

$$
T_{t 1}=T_{1}+T_{\mathrm{C}}
$$

and total tension in the slack side,

$$
T_{t 2}=T_{2}+T_{\mathrm{C}}
$$

2. Power transmitted,

$$
\begin{align*}
P & =\left(T_{t 1}-T_{t 2}\right) v \tag{inwatts}\\
& =\left[\left(T_{1}+T_{\mathrm{C}}\right)-\left(T_{2}+T_{\mathrm{C}}\right)\right] v=\left(T_{1}-T_{2}\right) v
\end{align*}
$$

... (same as before)
Thus we see that the centrifugal tension has no effect on the power transmitted.
3. The ratio of driving tensions may also be written as

$$
2.3 \log \left(\frac{T_{t 1}-T_{\mathrm{C}}}{T_{t 2}-T_{\mathrm{C}}}\right)=\mu . \theta
$$

$T_{t 1}=$ Maximum or total tension in the belt.

Maximum Tension in the Belt

$\sigma=$ Maximum safe stress,
$b=$ Width of the belt, and
$t=$ Thickness of the belt.

We know that the maximum tension in the belt,
$T=$ Maximum stress \times Cross-sectional area of belt $=\sigma . b . t$
When centrifugal tension is neglected, then
$T\left(\right.$ or $\left.T_{t 1}\right)=T_{1}$, i.e. Tension in the tight side of the belt.
When centrifugal tension is considered, then
$T\left(\right.$ or $\left.T_{t 1}\right)=T_{1}+T_{\mathrm{C}}$

Condition for the Transmission of Maximum Power

We know that the power transmitted by a belt,

$$
P=\left(T_{1}-T_{2}\right) v
$$

Where
$T_{1}=$ Tension in the tight side in newtons,
$T_{2}=$ Tension in the slack side in newtons, and
$v=$ Velocity of the belt in m / s.

$$
T=3 T_{\mathrm{C}}, \quad m \cdot v^{2}=T_{\mathrm{C}}
$$

find that the velocity of the belt for maximum power

$$
v=\sqrt{\frac{T}{3 m}}
$$

Problem 3

A leather belt $9 \mathrm{~mm} \times 250 \mathrm{~mm}$ is used to drive a cast iron pulley 900 mm in diameter at $336 \mathrm{r} . \mathrm{p} . \mathrm{m}$. If the active arc on the smaller pulley is 120° and the stress in tight side is 2 MPa , find the power capacity of the belt. The density of leather may be taken as $980 \mathrm{~kg} / \mathrm{m} 3$, and the coefficient of friction of leather on cast iron is 0.35

Solution

Given: $t=9 \mathrm{~mm}=0.009 \mathrm{~m} ; b=250 \mathrm{~mm}=0.25 \mathrm{~m} ; d=900 \mathrm{~mm}=0.9 \mathrm{~m} ; N=336$ r.p. $\mathrm{m} ; \theta=120^{\circ}=120$ $\pi / 180=2.1 \mathrm{rad} ; \sigma=2 \mathrm{MPa}=2 \mathrm{~N} / \mathrm{mm}^{2} ; \rho=980 \mathrm{~kg} / \mathrm{m}^{3} ; \mu=0.35$

The velocity of the belt

$$
v=\frac{\pi d . N}{60}=\frac{\pi \times 0.9 \times 336}{60}=15.8 \mathrm{~m} / \mathrm{s}
$$

Cross-sectional area of the belt,

$$
a=b . t=9 \times 250=2250 \mathrm{~mm}^{2}
$$

\therefore Maximum or total tension in the tight side of the belt,

$$
T=T_{t 1}=\sigma . a=2 \times 2250=4500 \mathrm{~N}
$$

We know that mass of the belt per metre length,

$$
\begin{aligned}
m=\text { Area } \times \text { length } \times \text { density } & =\text { b.t.l. } \rho=0.25 \times 0.009 \times 1 \times 980 \mathrm{~kg} / \mathrm{m} \\
& =2.2 \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

\therefore Centrifugal tension,

$$
* T_{\mathrm{C}}=m \cdot v^{2}=2.2(15.8)^{2}=550 \mathrm{~N}
$$

and tension in the tight side of the belt,

Let

$$
T_{1}=T-T_{\mathrm{C}}=4500-550=3950 \mathrm{~N}
$$

$T_{2}=$ Tension in the slack side of the belt

$$
\begin{aligned}
& 2.3 \log \left(\frac{T_{1}}{T_{2}}\right)=\mu . \theta=0.35 \times 2.1=0.735 \\
& \log \left(\frac{T_{1}}{T_{2}}\right)=\frac{0.735}{2.3}=0.3196 \text { or } \frac{T_{1}}{T_{2}}=2.085 \\
& T_{2}=\frac{T_{1}}{2.085}=\frac{3950}{2.085}=1895 \mathrm{~N}
\end{aligned}
$$

The power capacity of the belt,

$$
P=\left(T_{1}-T_{2}\right) v=(3950-1895) 15.8=32470 \mathrm{~W}=32.47 \mathrm{~kW}
$$

Notes :The power capacity of the belt, when centrifugal tension is taken into account, may also be obtained as discussed below :

1. We know that the maximum tension in the tight side of the belt,

$$
T_{t 1}=T=4500 \mathrm{~N}
$$

Centrifugal tension,

$$
T_{\mathrm{C}}=550 \mathrm{~N}
$$

and tension in the slack side of the belt,

$$
T_{2}=1895 \mathrm{~N}
$$

\therefore Total tension in the slack side of the belt,

$$
T_{t 2}=T_{2}+T_{\mathrm{C}}=1895+550=2445 \mathrm{~N}
$$

We know that the power capacity of the belt,

$$
P=\left(T_{t 1}-T_{t 2}\right) v=(4500-2445) 15.8=32470 \mathrm{~W}=32.47 \mathrm{~kW}
$$

2. The value of total tension in the slack side of the belt (Tt2)

$$
2.3 \log \left(\frac{T_{t 1}-T_{\mathrm{C}}}{T_{t 2}-T_{\mathrm{C}}}\right)=\mu . \theta
$$

Problem 4

A flat belt is required to transmit 30 kW from a pulley of 1.5 m effective diameter running at $300 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The angle of contact is spread over $11 / 24$ of the circumference. The coefficient of friction between the belt and pulley surface is 0.3 . Determine, taking centrifugal tension into account, width of the belt required. It is given that the belt thickness is 9.5 mm , density of its material is $1100 \mathrm{~kg} / \mathrm{m} 3$ and the related permissible working stress is 2.5 MPa .

Solution

$P=30 \mathrm{~kW}=30 \times 103 \mathrm{~W} ; d=1.5 \mathrm{~m} ; N=300$ r.p.m. ; $\theta=11 / 24 \times 360=165^{\circ}=165 \times \pi / 180=2.88 \mathrm{rad}$ $; \mu=0.3 ; t=9.5 \mathrm{~mm}=0.0095 \mathrm{~m} ; \rho=1100 \mathrm{~kg} / \mathrm{m}^{3} ; \sigma=2.5 \mathrm{MPa}=2.5 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$

$$
T_{1}=\text { Tension in the tight side of the belt in newtons, and }
$$

$T_{2}=$ Tension in the slack side of the belt in newtons.
The velocity of the belt

$$
v=\frac{\pi d N}{60}=\frac{\pi \times 1.5 \times 300}{60}=23.57 \mathrm{~m} / \mathrm{s}
$$

power transmitted (P),

$$
\begin{aligned}
& 30 \times 10^{3}=\left(T_{1}-T_{2}\right) v=\left(T_{1}-T_{2}\right) 23.57 \\
\therefore \quad & T_{1}-T_{2}=30 \times 10^{3} / 23.57=1273 \mathrm{~N}
\end{aligned}
$$

$2.3 \log \left(\frac{T_{1}}{T_{2}}\right)=\mu . \theta=0.3 \times 2.88=0.864$

$$
\log \left(\frac{T_{1}}{T_{2}}\right)=\frac{0.864}{2.3}=0.3756 \text { or } \frac{T_{1}}{T_{2}}=2.375
$$

... (Taking antilog of 0.3756)

$$
T_{1}=2199 \mathrm{~N} ; \text { and } T_{2}=926 \mathrm{~N}
$$

Let $b=$ Width of the belt required in metres.

We know that mass of the belt per metre length,

$$
\begin{aligned}
m & =\text { Area } \times \text { length } \times \text { density }=b \times t \times l \times \rho \\
& =b \times 0.0095 \times 1 \times 1100=10.45 b \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

and centrifugal tension,

$$
T_{\mathrm{C}}=m \cdot v^{2}=10.45 b(23.57)^{2}=5805 b \mathrm{~N}
$$

We know that maximum tension in the belt,

$$
\begin{array}{cc}
& T=T_{1}+T_{\mathrm{C}}=\text { Stress } \times \text { Area }=\sigma . b . t \\
\text { or } & 2199+5805 b=2.5 \times 106 \times b \times 0.0095=23750 b \\
\therefore & 23750 b-5805 b=2199 \text { or } b=0.122 \mathrm{~m} \text { or } 122 \mathrm{~mm}
\end{array}
$$

The standard width of the belt is 125 mm .

Problem 5

An electric motor drives an exhaust fan. Following data are provided:

	Motor pulley	Fan pulley
Diameter	400 mm	1600 mm
Angle of warp	2.5 radians	3.78 radians
Coefficient of friction	0.3	0.25
Speed	$700 \mathrm{r}: \mathrm{p.m}$.	-
Power transmitted	22.5 kW	-

Calculate the width of 5 mm thick flat belt. Take permissible stress for the belt material as 2.3 MPa .

Solution

$d_{1}=400 \mathrm{~mm}$ or $r_{1}=200 \mathrm{~mm} ; d_{2}=1600 \mathrm{~mm}$ or $r_{2}=800 \mathrm{~mm} ; \theta_{1}=2.5 \mathrm{rad} ; \theta_{2}=3.78 \mathrm{rad} ; \mu_{1}=0.3 ; \mu_{2}$ $=0.25 ; N_{1}=700$ r.p.m. ; $P=22.5 \mathrm{~kW}=22.5 \times 103 \mathrm{~W} ; t=5 \mathrm{~mm}=0.005 \mathrm{~m} ; \sigma=2.3 \mathrm{MPa}=2.3 \times 10^{6}$ $\mathrm{N} / \mathrm{m}^{2}$

For motor pulley, $\quad \mu_{1} . \theta_{1}=0.3 \times 2.5=0.75$
and for fan pulley, $\quad \mu_{2} . \theta_{2}=0.25 \times 3.78=0.945$
the velocity of the belt

$$
v=\frac{\pi d_{1} \cdot N_{1}}{60}=\frac{\pi \times 0.4 \times 700}{60}=14.7 \mathrm{~m} / \mathrm{s}
$$

the power transmitted (P),

$$
\begin{array}{rlrl}
& 22.5 \times 10^{3} & =\left(T_{1}-T_{2}\right) v=\left(T_{1}-T_{2}\right) 14.7 \\
& \therefore & T_{1}-T_{2} & =22.5 \times 10^{3} / 14.7=1530 \mathrm{~N}
\end{array}
$$

$$
2.3 \log \left(\frac{T_{1}}{T_{2}}\right)=\mu_{1} \cdot \theta_{1}=0.3 \times 2.5=0.75
$$

$$
\log \left(\frac{T_{1}}{T_{2}}\right)=\frac{0.75}{2.3}=0.3261 \text { or } \frac{T_{1}}{T_{2}}=2.12
$$

... (Taking antilog of 0.3261)
$T_{1}=2896 \mathrm{~N} ;$ and $T_{2}=1366 \mathrm{~N}$
Let $\quad b=$ Width of the belt in metres.
Since the velocity of the belt is more than $10 \mathrm{~m} / \mathrm{s}$, therefore centrifugal tension must be taken into consideration. Assuming a leather belt for which the density may be taken as $1000 \mathrm{~kg} / \mathrm{m} 3$.
\therefore Mass of the belt per metre length,

$$
\begin{aligned}
m & =\text { Area } \times \text { length } \times \text { density }=b \times t \times l \times \rho \\
& =b \times 0.005 \times 1 \times 1000=5 b \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

and centrifugal tension,

$$
T_{\mathrm{C}}=m \cdot v^{2}=5 b(14.7)^{2}=1080 b \mathrm{~N}
$$

We know that the maximum (or total) tension in the belt,

$$
T=T_{1}+T_{\mathrm{C}}=\text { Stress } \times \text { Area }=\sigma . b . t
$$

Or $\quad 2896+1080 b=2.3 \times 106 b \times 0.005=11500 b$
$\therefore 11500 b-1080 b=2896$ or $\quad b=0.278$ say 0.28 m or 280 mm

