Solution:

$$
\begin{aligned}
& \mathrm{u}=\frac{3}{4} \mathrm{y}-\mathrm{y} 2, \quad \frac{d u}{d y}=\frac{3}{4}-2 \mathrm{y} \\
& \text { At } y=0.15 \mathrm{~m}, \quad \frac{d u}{d y}=\frac{3}{4}-2 \times 0.15=0.45 \\
& \text { If } \mu=8.5 \text { poise }=0.85 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
& \tau=\mu \frac{d u}{d y}=0.85 \times 0.45=0.3825 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Problem 1.13/

The dynamic viscosity (μ) of an oil, used for lubrication between a shaft and sleeve is 6 poise. The shaft is of diameter 0.4 m and rotates (N) at 190 rpm . Calculate the power lost in a bearing for a sleeve length of $\mathbf{9 0} \mathbf{~ m m}$. The thickness of the oil film is 1.5 mm .

Solution:

$$
\begin{aligned}
& \mu=6 \text { poise }=0.6 \text { N.s } / \mathrm{m}^{2} \\
& \mathrm{u}=\mathrm{r} \omega=\frac{D}{2} \times \frac{2 \pi N}{60}=\frac{\pi D N}{60}=\frac{\pi \times 0.4 \times 190}{60}=3.98 \mathrm{~m} / \mathrm{s} \\
& \tau=\mu \frac{d u}{d y}=0.6 \frac{3.98}{1.5 \times 10^{-3}}=1592 \mathrm{~N} / \mathrm{m}^{2} \\
& \tau=\frac{F}{A} \quad \text { (A is surface area) } \\
& \mathrm{F}=\boldsymbol{\tau} \mathrm{A}=\boldsymbol{\tau} \times \pi \mathrm{D} \mathbf{L}=1592 \times \pi \times 0.4 \times 90 \times 10^{-3}=180.05 \mathrm{~N} \\
& T=F \times \frac{D}{2} \quad \text { (T is Torque } N . m \text {) } \\
& =180.05 \times \frac{0.4}{2}=36.01 \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

Power $(\operatorname{lost})=\mathrm{T} \omega=36.01 \times \frac{2 \pi N}{60}=71648$ watt.

Problem 1.14 /

The weight density (γ) of gas is $16 \mathrm{~N} / \mathrm{m}^{3}$ at $25^{\circ} \mathrm{c}$ and at an absolute pressure of $25 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$. Determine the mass density (ρ) of gas and gas constant (R)?

Solution:

$\mathrm{T}_{\text {abs. }}=\mathbf{2 5}+273=298^{\circ} \mathrm{K}$

$$
P=0.25 \times 10^{6}=25 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}
$$

$$
\gamma=\rho \mathbf{g}
$$

$\rho=\frac{\gamma}{g}=\frac{16}{9.81}=1.63 \mathrm{~kg} / \mathrm{m}^{3}, \quad \frac{P}{\rho}=\mathrm{R} \mathrm{T}, \quad \mathrm{R}=\frac{\mathrm{p}}{\rho \mathrm{T}}=\frac{25 \times 10^{4}}{1.63 \times 298}$
$=532.5 \mathrm{~N} . \mathrm{m} / \mathrm{kg} . \mathrm{k}$

Problem 1.15 /

A cylinder of $0.6 \mathbf{m}^{\mathbf{3}}$ in volume contains air at $50^{\circ} \mathbf{c}$ and P_{1} is $\mathbf{3 0 \times 1 0 ^ { 4 }} \mathbf{N} / \mathbf{m}^{2}$ absolute pressure. The air is compressed to $0.3 \mathrm{~m}^{3}$. Find (1) pressure inside the cylinder, assuming isothermal process and (2) pressure and temperature, assuming adiabatic process. (Take 1.4).

Solution:

$\mathrm{V}_{1}=0.6 \mathrm{~m}^{3}, \mathrm{~T}_{1}=50+273=323^{\circ} \mathrm{k}, \mathrm{P}_{1}=30 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{V}_{2}=0.3 \mathrm{~m}^{\mathbf{3}}, \mathrm{k}=1.4$
(1) Isothermal process:
$\mathbf{P} \mathbf{V}=$ constant

$$
\mathbf{P}_{1} \mathbf{V}_{1}=\mathbf{P}_{2} \mathbf{V}_{2} \quad, \quad \mathbf{P}_{2}=\frac{p_{1 V_{1}}}{V_{2}}=\frac{30 \times 10^{4} \times 0.6}{0.3}=0.6 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
$$

(2) Adiabatic process:

$$
\begin{aligned}
P V^{k} & =\text { constant } \\
P_{1} V_{1}^{k} & =P_{2} V_{2}^{k} \\
P_{2} & =P 1 \frac{V_{1}^{k}}{V_{2}^{k}}=30 \times 10^{4} \times\left(\frac{0.6}{0.3}\right)^{1,4}=30 \times 10^{4} \times 2^{1.4}
\end{aligned}
$$

$$
=0.791 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
$$

$$
\begin{aligned}
& \mathrm{R} \mathrm{~T} \mathrm{~V}^{k-1}=\text { constant } \\
& \mathrm{T}^{\mathrm{k}-1}=\text { constant } \quad(\mathrm{R} \text { is constant }) \\
& \mathrm{T}_{1} V_{1}^{k-1}=\mathrm{T}_{2} V_{2}^{k-1} \quad, \mathrm{~T}_{2}=\mathrm{T}_{1}\left(\frac{V_{1}}{V_{2}}\right)^{1.4-1} \\
& \mathrm{~T}_{2}=323\left(\frac{0.6}{0.3}\right)^{0.4}=323 \times 10^{0.4}=426.2^{0} \mathrm{k} \\
& \mathrm{~T}_{2}=426.2-273=153.2^{\circ} \mathrm{c}
\end{aligned}
$$

Problem 1.16/

Determine the Bulk modulus of elasticity (K) of a liquid. If the pressure of the liquid increased from $70 \mathrm{~N} / \mathrm{cm}^{2}$ to $130 \mathrm{~N} / \mathrm{cm}^{2}$. The volume of the liquid decreases by 0.15 per cent (15%) .

Solution:

Increase of pressure $(\mathrm{dP})=130-70=60 \mathrm{~N} / \mathrm{cm}^{2}$
Decrease of Volume ($\mathbf{d V}$) $=15 \%$
$K=\frac{d p}{\frac{d V}{V}}=\frac{60}{\frac{15}{100}}=4 \times 10^{4} \mathrm{~N} / \mathrm{cm}^{2}$

Problem 1.17 /

What is the Bulk modulus of elasticity of a liquid (K) which is compressed in a cylinder from a volume of $0.0125 \mathrm{~m}^{\mathbf{3}}$ at $80 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$ pressure to a volume of $0.0124 \mathrm{~m}^{3}$ at $150 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$ pressure?

Solution:

$$
\mathrm{d} V=0.0125-0.0124=0.0001 \mathrm{~m}^{3}
$$

$d P=150 \times 10^{4}-80 \times 10^{4}=70 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$

$$
\mathrm{K}=\frac{d P}{\frac{-d V}{V}}=\frac{70 \times 10^{4}}{\frac{0.0001}{0.0125}}=70 \times 125 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}
$$

Problem 1.18 /

A surface tension of water in contact with air (σ) is $0.0725 \mathrm{~N} / \mathrm{m}$. The pressure inside a droplet of water is to be $0.02 \times 10^{4} \mathrm{~N} / \mathbf{m}^{2}$ greater than the outside pressure. Calculate the diameter of the droplet of water.

Solution:

$\mathrm{P}=0.02 \times \mathbf{1 0}^{4} \mathrm{~N} / \mathrm{m}^{2}$

$$
\mathrm{P}=\frac{4 \sigma}{d}, \quad \mathrm{~d}=\frac{4 \sigma}{P}=\frac{4 \times 0.0725}{0.02 \times 10^{4}}=0.00145 \mathrm{~m}=1.45 \mathrm{~mm} .
$$

Problem 1.19 /

Find the surface tension in a soap bubble (σ) of a 40 mm diameter, when the inside pressure is $2.5 \mathrm{~N} / \mathbf{m}^{2}$ above atmospheric pressure.

Solution:

$$
P=\frac{8 \sigma}{d} \quad, \quad \sigma=\frac{P d}{8}=\frac{2.5 \times 40 \times 10^{-3}}{8}=0.0125 \mathrm{~N} / \mathrm{m}
$$

Problem 1.20 /

The pressure outside the droplet of water of diameter $0.04 \mathbf{~ m m}$ is $10.32 \mathrm{~N} / \mathbf{c m}^{2}$ (atmospheric pressure). Calculate the pressure within the droplet, if surface tension is given as $0.0725 \mathrm{~N} / \mathrm{m}$ of water.

Solution:

$$
\begin{aligned}
P_{\text {inside }}= & \frac{4 \sigma}{d}=\frac{4 \times 0.0725}{0.04 \times 10^{-3}}=7250 \mathrm{~N} / \mathrm{m}^{2}=0.725 \mathrm{~N} / \mathrm{cm}^{2} \\
& P_{\text {outside }}=P_{\text {inside }}+P_{\text {atm. }}=0.725+10.32=11.045 \mathrm{~N} / \mathrm{cm}^{2}
\end{aligned}
$$

Problem 1.21 /

Calculate the capillary effect in millimeter in a glass tube of $4 \mathbf{~ m m}$ diameter, when immersed in (1) water, and (2) mercury. The values of the surface tension
of water and mercury are $0.073575 \mathrm{~N} / \mathrm{m}$ and $0.51 \mathrm{~N} / \mathrm{m}$ respectively. The angle of contact for mercury $\mathbf{1 . 3 0}^{\circ}$.

Solution:

$$
\mathrm{h}=\frac{4 \sigma \cos \theta}{\rho g d}
$$

(1) For water rise, $\quad h=\frac{4 \times 0.073575}{1000 \times 9.81 \times 4 \times 10^{-3}} \quad(\Theta$ is zero $)$ $h=7.51 \times 10^{-3} \mathrm{~m}=7.51 \mathrm{~mm}$
(2) For mercury depression, $h=\frac{-4 \times 0.51 \times \cos 1.30^{\circ}}{13600 \times 9.81 \times 4 \times 10^{-3}}$
$h=-2.46 \times 10^{-3} \mathrm{~m}=-2.46 \mathrm{~mm}$

Problem 1.22 /

Find the diameter of glass tube (capillary tube) that can be used to measure surface tension of water in contact with air as $0.073575 \mathrm{~N} / \mathrm{m}$.

Solution:

$$
\mathrm{h}=\frac{4 \sigma}{\rho g d} \quad, \quad \mathrm{~d}=\frac{4 \sigma}{\rho g h}=\frac{4 \times 0.073575}{1000 \times 9.81 \times 2 \times 10^{-3}}
$$

$$
=0.015 \mathrm{~m}=1.5 \mathrm{~cm}
$$

