MOMENTS OF INERTIA

(a)

(b)

(c)

(d)

$$
\begin{aligned}
& I_{x}=k_{x}{ }^{2} A \\
& I_{y}=k_{y}{ }^{2} A \\
& \left.I_{z}=k_{z}{ }^{2} A \quad \text { or } \quad \begin{array}{l}
k_{x}=\sqrt{I_{x} / A} \\
k_{y}=\sqrt{I_{y} / A} \\
h_{z}=\sqrt{I_{z} / A}
\end{array}\right]={ }^{2}
\end{aligned}
$$

$$
k_{z}^{2}=k_{x}^{2}+k_{y}^{2}
$$

Transfer of Axes

$$
d I_{x}=\left(y_{0}+d_{x}\right)^{2} d A
$$

$$
I_{x}=\int y_{0}^{2} d A+2 d_{x} \int y_{0} d A+d_{x}^{2} \int d A
$$

$$
\begin{aligned}
& I_{x}=\bar{I}_{x}+A d_{x}^{2} \\
& I_{y}=\bar{I}_{y}+A d_{y}^{2}
\end{aligned}
$$

COMPOSITE AREAS

$$
\begin{aligned}
& I_{x}=\Sigma \bar{I}_{x}+\Sigma A d_{x}^{2} \\
& I_{y}=\Sigma \bar{I}_{y}+\Sigma A d_{y}^{2}
\end{aligned}
$$

Problem 1

Calculate the moment of inertia and radius of gyration about the x -axis for the shaded area shown.

$$
I_{x}=\frac{1}{3} b h^{3}, I_{x}=\frac{1}{3} 80 * 60^{3}=5.76\left(10^{6}\right) \mathrm{mm}^{4}
$$

the moment of inertia of the negative quarter-circu lar area about its base axis x ' is

$$
I_{\tilde{x}}=-\frac{1}{4}\left(\frac{\pi r^{4}}{4}\right)=-\frac{\pi}{16}\left(30^{4}\right)=-0.159\left(10^{6}\right) \mathrm{mm}^{4}
$$

We now transfer this result through the distance $\bar{r}=\frac{4 r}{3 \pi}=\frac{4(30)}{3 * 3.14}=12.73 \mathrm{~mm}$ by th e transfer-or-axis theorem to get the centroidal moment of inertia of part (2)

$$
\bar{I}=I-A d^{2}, \bar{I}_{x}=-0.159\left(10^{6}\right)-\left[-\frac{\pi\left(30^{2}\right)}{4}\left(12.73^{2}\right)\right]=-0.0445\left(10^{6}\right) \mathrm{mm}^{4}
$$

The moment of inertia of t he quarter-circular part about the.x-axis is now

$$
\bar{I}=I+A d^{2}, I_{x}=-0.0445\left(10^{6}\right)+\left[-\frac{\pi\left(30^{2}\right)}{4}(60-12.73)^{2}\right]=-1.624\left(10^{6}\right) \mathrm{mm}^{4}
$$

Finally, the momen t of inertia of the negative triangular area (3) about its base

$$
I_{x}=-\frac{1}{12} b h^{3}, I_{x}=-\frac{1}{12} 40 * 30^{3}=-0.09\left(10^{6}\right) \mathrm{mm}^{4}
$$

The total moment of inertia about the z -axi s of t he composite area is, consequently,

$$
I_{x}=5.76\left(10^{6}\right)-1.624\left(10^{6}\right)-0.09\left(10^{6}\right)=4.05\left(10^{6}\right) \mathrm{mm}^{4}
$$

$$
A=60(80)-\frac{1}{4} \pi 30^{2}-\frac{1}{2} 40(30)=3490 \mathrm{~mm}^{2}
$$

the radius of gyration about t he x-axis is

$$
k_{x}=\sqrt{\frac{I_{x}}{A}}=\sqrt{\frac{4.05\left(10^{6}\right)}{3490}}=34 \mathrm{~mm}
$$

Problem 2

Determine the moment of inertia about the .x-axis of the square area with out and with the central circular hole.

Without hole

$$
I_{x}=\frac{1}{12} b h^{3}=\frac{1}{12}(4 R)(4 R)^{3}=\frac{64}{3} R^{4}
$$

With hole

$$
I_{x}=\frac{1}{12} b h^{3}-\frac{1}{4} \pi r^{4}=\frac{1}{12}(4 R)(4 R)^{3}-\frac{1}{4} \pi\left(R^{4}\right)=\frac{64}{3} R^{4}-\frac{1}{4} \pi\left(R^{4}\right)=20.6 R^{4}
$$

