ALMUSTAQBAL UNIVERSITY

College of Engineering and Engineering Techniques
Stage : Second year students
Subject : Chemistry 1 - Lecture 4
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Normality (N)

Represents the number of equivalents contained in one liter solution or the number of milli equivalents of solute contained in one milliliter of solution .
e.g: 0.2 N HCl solution contains 0.2 equivalents (eq) of HCl in liter solution or 0.2 milli equivalent (meq) of HCl in each mL of solution .
$\operatorname{Normality}(\mathbf{N})=\frac{\text { number of equivalents }(\text { solute })}{V L(\text { solution })}$
Number of equivalents $(\mathrm{eq})=\frac{w t(g)}{e q \cdot w t(g)}$
$\operatorname{Normality}(\mathrm{N})=\quad \frac{\frac{w t}{\text { eq.wt }}}{V(\text { liter })}$
$\operatorname{Normality}(\mathbf{N})=\frac{\frac{w t}{e q . w t}}{\frac{V(m L)}{1000}}$
$\operatorname{Normality}(\mathrm{N})=\frac{w t \times 1000}{\text { eq.wt } \times V(m L)}$

Exercise: proof that $\operatorname{Normality~}(\mathbf{N})=\frac{w t \times 1000}{e q \cdot w t \times V(m L)}$
الجواب : نكتب الاشتقاق (الخطوات الاربعه اعلاه)
Eq.wt $=\frac{M w t}{\eta}$
Normality (N) $=\frac{w t \times 1000}{\frac{M w t}{\eta} \times V(m L)}$
Normality (N) $=\frac{w t \times 1000}{\frac{M w t \times V(m L)}{\eta}}$
Normality (N) $=\left(\frac{w t x 1000}{M w t x V(m L)}\right) \eta$
Normality (N) = Molarity (M) . $\boldsymbol{\eta} \quad$, or \quad Molarity(M) $=$ Normality(N) / $\boldsymbol{\eta}$

I. Equivalent mass in neutralization reaction:

A) Equivalent mass of acids (Eq):-

Is the mass that either contribute or reacts with one mole of hydrogen ion in the reaction.
$\mathrm{Eq}=\frac{M w t}{\text { number of } H}$

1. Monoprotic acid e.g: $\left(\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{CH}_{3} \mathrm{COOH}\right) \quad \eta=1$
$\mathrm{Eq}=\frac{M w t}{1}$
$\mathrm{Eq}=\frac{36.5}{1}=36.5$ for HCl
$E q=\frac{63}{1}=63$ for HNO_{3}
2. Diprotic acid e.g: $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{SO}_{3}\right) \eta=2$
$\mathrm{Eq}=\frac{M w t}{2}=\frac{98}{2}=49 \quad$ for $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{Eq}=\frac{34}{2}=17$ for $\mathrm{H}_{2} \mathrm{~S}$
$\mathrm{Eq}=\frac{82}{2}=41$ for $\mathrm{H}_{2} \mathrm{SO}_{3}$

B) Equivalent mass of Bases:

Is the mass that either contribute or reacts with one mole of OH in the reaction.
$\mathrm{Eq}=\frac{\mathrm{Mwt}}{\text { number of } \mathrm{OH}}$

1. Monohydroxy base e.g: $(\eta=1)$
e.g: NaOH ($40 \mathrm{~g} / \mathrm{mole}$)

Eq. $=\frac{M w t}{1}=\frac{40}{1}=40$

e.g: KOH ($56 \mathrm{~g} / \mathrm{mole}$)

Eq. $=\frac{M w t}{1}=\frac{56}{1}=56$
2. Dihydroxy base $(\eta=2)$
e.g: $\mathrm{Ca}(\mathrm{OH})_{2}(74 \mathrm{~g} / \mathrm{mole})$

Eq. $=\frac{M w t}{2}=\frac{74}{2}=37$
$\mathrm{Zn}(\mathrm{OH})_{2}(99.4 \mathrm{~g} / \mathrm{mole})$
Eq. $=\frac{M w t}{2}=\frac{99.4}{2}=49.7$
$\mathrm{Ba}(\mathrm{OH})_{2}(171.35 \mathrm{~g} /$ mole $)$

$$
\text { Eq. }=\frac{M w t}{2}=\frac{171.35}{2}=85.67
$$

II. Equivalent mass in (oxidation - reduction) reaction (Redox):

The equivalent mass of a participant in an (oxidation-reduction) reaction is that mass which directly produce or consume one mole of electron.
$\mathbf{E q}=\frac{M w t}{\eta}$

$$
\eta=\text { change in oxidation state number }
$$

$\eta=$ numbers of electrons participate in oxidation - reduction processes (Redox)

Example :

$2 \mathrm{KMnO}_{4}+10 \mathrm{FeSO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{MnO}_{4}{ }^{-}+\mathbf{1 0 \mathrm { Fe } ^ { 2 + }}+\mathbf{8} \mathrm{H}^{+} \rightleftharpoons 10 \mathrm{Fe}^{3+}+\mathbf{2} \mathrm{MnSO}_{4} \quad$ (acidic medium)
$\mathbf{M n}^{7+} \quad \rightarrow \quad \mathbf{M n}^{2+}(5$ e gain - reduction $)$
$\mathrm{Fe}^{2+} \quad \rightarrow \quad \mathrm{Fe}^{3+}(1$ e loss - oxidation $)$

Eq. of $\mathrm{KMnO}_{4}=\frac{M w t}{5}=\frac{157.9}{5}=31.6$
III. Equivalent mass for salts:

$$
\mathrm{Eq}=\frac{M w t}{\eta}
$$

$(\eta)=\Sigma$ [no. of cations x its valency(cation charge)]
e.g: $\mathrm{AgNO}_{3}(170 \mathrm{~g} / \mathrm{mole})$

$$
\left(\mathrm{AgNO}_{3} \rightarrow \mathrm{Ag}++\mathrm{NO}_{3}^{-}\right)
$$

$\left(\eta=\mathrm{Ag}^{+}(1) \times 1=1\right)$
Eq. $=\frac{M w t}{1}=\frac{170}{1}=170$
e.g: $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($106 \mathrm{~g} / \mathrm{mole}$)
$\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}{ }^{-}\right)$
$\left(\eta=\mathrm{Na}^{+}(2) \times 1=2\right)$
Eq. $=\frac{M w t}{2}=\frac{106}{2}=53$
e.g: $\mathrm{BaSO}_{4}(233 \mathrm{~g} / \mathrm{mole})$
$\left(\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \leftrightarrow \mathrm{BaSO}_{4}\right)$
$\eta=\mathrm{Ba}^{2+}(1) \times(2+)=2$
Eq. $=\frac{M w t}{2}=\frac{233}{2}=116.5$
e.g: $\mathrm{La}\left(\mathrm{IO}_{3}\right)_{3} \quad(663.6 \mathrm{~g} / \mathrm{mole})$
$\left(\mathbf{L a}\left(\mathrm{IO}_{3}\right)_{3} \rightarrow \mathbf{L a}^{\mathbf{3 +}}+\mathbf{3} \mathbf{I O}_{3^{-}}\right)$

$$
\left(\eta=\mathrm{La}^{3+}(1) \times 3=3\right)
$$

Eq. $=\frac{M w t}{3}=\frac{663.6}{3}=\mathbf{2 2 1 . 1}$
e.g: $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}(258 \mathrm{~g} / \mathrm{mole})$
$(\eta)=\Sigma[$ no. of cations x its valency(cation charge) $]$
no. of cations $=1 \mathrm{~K}^{+}+1 \mathrm{Al}^{3+}$
$\eta=K^{+}(1) \times(1+)+A 1^{3+}(1) \times(3+)=4$
Eq. $=\frac{M . w t}{4}=\frac{258}{4}=64.5$

Example

Find the Normality of the solution containing $5.3 \mathrm{~g} / \mathrm{L}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}(106 \mathrm{~g} / \mathrm{mol})$.
Solution:
To find η for $\mathrm{Na}_{2} \mathrm{CO}_{3}(\boldsymbol{\eta})=\boldsymbol{\Sigma}$ [no. of cations \mathbf{x} its valency(cation charge)]
No. of cations $=2 \mathrm{Na}+\quad$ while the cation charge for $\mathrm{Na}^{+}=1$,
Then $(\eta)=2 \times 1=2$
Eq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{M w t}{2}=\frac{\mathbf{1 0 6}}{2}=\mathbf{5 3 . 0} \mathbf{~ g m}$
$\operatorname{Normality}(\mathrm{N})=\frac{w t}{E q \cdot x V L}$
Normality $(N)=\frac{5.3 g}{53.0 \times 1 L}=0.1 \mathrm{~N}$
Second method:
$\operatorname{Normality}(\mathbf{N})=\left(\frac{w t \times 1000}{M w t \times V(m L)}\right) \boldsymbol{\eta}$
Normality $(\mathrm{N})=\left(\frac{5.3 \times 1000}{106 \times 1000(m L)}\right) 2=0.1 \mathrm{~N}$

Example;

Convert the following Molarities to Normalities.
a. 2.5 M HCl
b. $1.4 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
c. 1.0 M NaOH
d. $0.5 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$

Answer:
a. Normality (N) of $\mathbf{2 . 5 M H C l}=\mathrm{M} \cdot \boldsymbol{\eta}=\mathbf{2 . 5 \times 1} \mathbf{= 2 . 5} \mathrm{NHCl}$,
b. Normality (N) of $1.4 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{M} . \eta=1.4 \times 2=2.8 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$
c. Normality (N) of $\mathbf{1 M} \mathbf{N a O H}=\mathrm{M} \cdot \boldsymbol{\eta}=1 \times 1=1 \mathrm{~N} \mathrm{NaOH}$
d. Normality (N) of $0.5 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}=\mathrm{M} . \eta=0.5 \times 2=1 \mathrm{~N} \mathrm{Ca}(\mathrm{OH})_{2}$

Molality(m):

The number of moles of solute per kilogram of solvent.

$$
\begin{aligned}
& \text { انتبه هنا استخذم وزن المذيب وليس الـحلول } \\
& \text { (المو لاليه =عدد مولات المذاب في الكيلوغرام من الدذيب) } \\
& \text { Solute }=\text { والمذاب } \text { و المحلول } \text { و } \text { solvent }=\text { solution }
\end{aligned}
$$

Molality $(\mathrm{m})=\frac{\text { number of moles }(\text { solute })}{\text { mass of solvent }(\text { Kg })}$
Molality $(\mathrm{m})=\frac{\text { number of moles }(\text { solute })}{\text { mass of solvent }\left(\frac{g}{1000}\right)}=\frac{\text { number of moles }(\text { solute }) x 1000}{\text { mass of solvent }(\mathrm{g})}$

Example :

Determine the molality of a solution prepared by dissolving 75 g of solid $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(261.32 \mathrm{~g} / \mathrm{mole})$ into 374 g of water.

Solution:

$\operatorname{Molality}(\mathrm{m})=\frac{\text { number of moles }(\text { solute }) x 1000}{\text { mass of solvent }(g)}$
No of moles(solute) $=\frac{w t}{M . w t}=\frac{75 \mathrm{~g}}{261.32 \mathrm{~g} / \mathrm{mol}}=0.287$ moles
$\operatorname{Molality}(\mathrm{m})=\frac{\text { number of moles }(\text { solute }) \times 1000}{\text { mass of solvent }(\mathrm{g})}=\frac{0.287 \text { mol } x 1000}{374 \mathrm{~g}}$
$\operatorname{Molality}(\mathbf{m})=\mathbf{0 . 7 6}$

Example:

The mass of an aqueous solution that contains 11.7 g of $\mathrm{NaCl}(58.5 \mathrm{~g} / \mathrm{mole})$ is
551.7 g . Calculate the molality of the solution.

Solution ;

Mass of solution $=$ mass of solute $\boldsymbol{+}$ mass of solvent
Mass of solution $=$ mass of solute $(\mathbf{N a C l})+$ mass of solvent $\left(\mathbf{H}_{2} \mathrm{O}\right)$
Mass of solvent $\left(\mathrm{H}_{2} \mathrm{O}\right)=$ Mass of solution - mass of solute (NaCl)
Mass of solvent $\left(\mathrm{H}_{2} \mathrm{O}\right)=551.7 \mathrm{~g}-11.7 \mathrm{~g}=540 \mathrm{~g}$
No. of moles of $\mathrm{NaCl}=\frac{\operatorname{mass}(g)}{M . w t}$
No. of moles of $\mathrm{NaCl}=\frac{11.7}{58.5}=0.2$ mole
Molality $(\mathrm{m})=\frac{\text { number of moles }(\text { solute }) \times 1000}{\text { mass of solvent }(g)}$
Molality (m) $=\frac{0.2 \operatorname{mol} x 1000}{540 \mathrm{~g}}=0.37$
Exercise:
7.45 g of potassium chloride $\mathrm{KCl}(74.5 \mathrm{~g} /$ mole $)$ was dissolved in 100 g of water. Calculate the molality of the solution.

Example :
A 11.11 g of urea $\mathrm{NH}_{2} \mathrm{CONH}_{2}(60 \mathrm{~g} /$ mole $)$ was dissolved in 100 g of water ($\mathrm{d}=$ $1 \mathrm{~g} / \mathrm{mL}$). Calculate the molarity and molality of the solution.

Solution:

No. of moles of urea $=\frac{m a s s(g)}{M . w t}$
No . of moles of urea $=\frac{\mathbf{1 1 . 1 1 (g)}}{60}=\mathbf{0 . 1 8 5 2}$ mole

Volume of water $=\frac{\text { mass of water }(g)}{\operatorname{density}\left(\frac{g}{m L}\right)}$
Volume of water $=\frac{100(g)}{1\left(\frac{g}{m L}\right)}=100 \mathrm{~mL}=0.1 \mathrm{~L}$

Molarity $(\mathbf{M})=\frac{\text { No .of moles of urea }}{\text { Volume of water }(L)}$
Molarity $(\mathrm{M})=\frac{0.1852}{0.1(L)}=1.852 \mathrm{M}$
Or Molarity $(\mathrm{M})=\frac{w t \times 1000}{M w t \times V(m L)}=\frac{11.11 \times 1000}{60 \times 100(m L)}=1.852 \mathrm{M}$

Molality $(\mathrm{m})=\frac{\text { number of moles }(\text { solute }) x 1000}{\text { mass of solvent }(g)}$
Density of water $=1 \mathrm{~g} / \mathrm{mL}$

Mass of solvent $\left(\mathbf{H}_{2} \mathrm{O}\right)=1 \mathrm{~g} / \mathrm{mL} \mathrm{x}$ volume of water $(\mathbf{m L})=1 \times 100=100 \mathrm{~g}$
Molality $(\mathrm{m})=\frac{0.1825 \operatorname{molx} 1000}{100 g}=1.852$

Example:

The weight of $10 \mathrm{~g} \mathrm{KCl}(74.5 \mathrm{~g} / \mathrm{mol})$ is dissolved in 1000 g of water. If the density of the prepared solution is $0.997 \mathrm{~g} \mathrm{~mL}^{-1}$, calculate :
a) molarity and b) molality of the solution.

Solution:

Molarity $=\frac{w t \times 1000}{M w t \times V(m L)}$
Mass of solution $=10 \mathrm{~g}+1000 \mathrm{~g}=1010 \mathrm{~g}$
Volume of solution $=\frac{\text { mass of solution }}{\text { density }}=\frac{1010 \mathrm{~g}}{0.997}=1013 \mathrm{~mL}$

Molarity $=\frac{10 \times 1000}{74.5 \times 1013(m L)}=0.1325 \mathrm{M}$
$\operatorname{Molality}(\mathrm{m})=\frac{\text { number of moles }(\text { solute }) \times 1000}{\text { mass of solvent }(g)}$
No . of moles of $\mathrm{KCl}=\frac{\operatorname{mass}(g)}{M . w t}$
No. of moles of $\mathrm{KCl}=\frac{\mathbf{1 0}}{74.5}=\mathbf{0 . 1 3 4 2}$
$\operatorname{Molality}(\mathrm{m})=\frac{0.1342 \times 1000}{1000}=0.1342$

Mole fraction:

The number of moles of one component relative to the total number of moles of all components in the solution.

Mole fraction of $\operatorname{solute}\left(X_{1}\right)=\frac{\text { No.of moles of solute }\left(n_{1}\right)}{\text { mole of solute }\left(n_{1}\right)+\text { moles of solvent }\left(n_{2}\right)}$

Mole fraction of $\operatorname{solvent}\left(X_{2}\right)=\frac{\text { No.of moles of solvent }\left(n_{2}\right)}{\text { moles of solute }\left(n_{1}\right)+\text { moles of solvent }\left(n_{2}\right)}$

$\mathbf{X}_{\mathbf{T}}=\sum \mathbf{X}_{\mathbf{i}}=\mathbf{1}$
$X_{1}+X_{2}=1$
Then $\quad \mathbf{X}_{1}=1-\mathbf{X}_{2}$
and $\quad X_{2}=1-X_{1}$

Example: calculate the mole fraction for each of solute and solvent in a solution if the solute is (2 mole) and the solvent in (3 mole) .

Solution:
$X_{1}=\frac{n_{1}}{n_{1}+n_{2}}=\frac{2}{2+3}=\frac{2}{5}=0.4$
$X_{2}=\frac{n_{2}}{n_{1}+n_{2}}=\frac{3}{2+3}=\frac{3}{5}=0.6$
$X_{1}+X_{2}=0.4+0.6=1$
For 3 components mixture we have X_{1}, X_{2}, and X_{3} Then:

$$
\begin{aligned}
& \mathrm{X}_{1}=\frac{n 1}{n 1+n 2+n 3} \\
& \mathrm{X}_{2}=\frac{n 2}{n 1+n 2+n 3} \\
& \mathrm{X}_{3}=\frac{n 3}{n 1+n 2+n 3}
\end{aligned}
$$

Example: Calculate the mole fraction for each component in a mixture that contains 1 mole of $A, 2$ moles of B and $\mathbf{3}$ moles of C.

Total no of moles $n_{T}=$ moles of $A\left(n_{A}\right)+$ moles of $B\left(n_{B}\right)+$ moles of $C\left(n_{C}\right)$

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{T}}=\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}+\mathrm{n}_{\mathrm{C}} \\
& \mathrm{n}_{\mathrm{T}}=1+2+3=6 \text { moles } \\
& \mathrm{X}_{\mathrm{A}}=\frac{n_{A}}{n_{T}}=\frac{1}{6}=0.17 \\
& \mathrm{X}_{\mathrm{B}}=\frac{n_{B}}{n_{T}}=\frac{2}{6}=0.33 \\
& \mathrm{X}_{\mathrm{C}}=\frac{n_{C}}{n_{T}}=\frac{3}{6}=0.5 \\
& \mathrm{X}_{\mathrm{T}}=\sum \mathrm{X}_{\mathrm{i}}=0.17+0.33+0.5=1
\end{aligned}
$$

Example:

A 4.6 mL of methanol $(\mathbf{3 2} \mathrm{g} / \mathrm{mol}, \mathrm{d}=0.7952 \mathrm{~g} / \mathrm{mL})$ is dissolved in 25.2 g of water $(18 \mathrm{~g} / \mathrm{mol})$. Calculate the mole fraction of methanol and water. Solution:

Mass of methanol (g)= Volume x density
Mass of methanol $(\mathrm{g})=4.6 \mathrm{~mL} \times 0.7952 \mathrm{~g} \mathrm{~mL}^{-1}=3.658 \mathrm{~g}$

No. of moles of methanol $=\frac{\operatorname{mass}(g)}{M . w t}$
No . of moles of methanol $\left(n_{1}\right)=\frac{3.658(g)}{32}=\mathbf{0 . 1 1 4 3}$
No. of moles of water $\left(\mathrm{n}_{2}\right)=\frac{25.2(\mathrm{~g})}{18}=1.4$
Total number of moles $=\mathbf{n}_{1}+\mathbf{n}_{\mathbf{2}}=\mathbf{0 . 1 1 4 3}+\mathbf{1 . 4}=\mathbf{1 . 5 1 4 3} \mathbf{~ m o l}$
Mole fraction of methanol $\left(\mathrm{X}_{1}\right)=\frac{n_{1}}{n_{1}+n_{2}}$
Mole fraction of methanol $\left(X_{1}\right)=\frac{0.1143}{1.5143}=0.0755$
Mole fraction of water $\left(\mathrm{X}_{2}\right)=\frac{n_{2}}{n_{1}+n_{2}}$
Mole fraction of solvent $($ water $)=\mathbf{X}_{2}=\frac{1.4}{1.5143}=\mathbf{0 . 9 2 4 5}$

Exercise:

The mass of an aqueous solution that contains 10.1 g of $\mathrm{KNO}_{3}(101 \mathrm{~g} / \mathrm{mol})$ is
154.1 g. Calculate :

1. The molality of the solution.
2. The mole fraction of each of the solute $\left(\mathrm{KNO}_{3}\right)$ and solvent $\left(\mathrm{H}_{2} \mathrm{O}\right)(18 \mathrm{~g} / \mathrm{mol})$.
