ALMUSTAQBAL UNIVERSITY

College of Engineering and Engineering Techniques
Stage : Second year students
Subject : Chemistry 1 - Lecture 5
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Molarity of liquids:

The molarity of liquids Can be determined by applying the following formula:
Molarity of liquid(\mathbf{M}) $=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% x 1000}{M w t}$
Specific gravity (Sp.gr) = $\frac{\text { density of substance }}{\text { density of water }}$
Specific gravity (Sp.gr) $=\frac{d_{\text {substance }}}{d_{H_{2} O}}$
(sp.gr $\left.\approx \mathbf{d}_{\text {substance }}\right) \quad$ as $\mathbf{d}_{\mathrm{H}_{2} \mathrm{O}=1}$ (at room temperature)

Example:

Calculate the molarity of the solution of $70.5 \% \mathrm{HNO}_{3}(\mathrm{w} / \mathrm{w})(63 \mathrm{~g} / \mathrm{mole})$ that has specific gravity of (1.42) .

Solution:

$\operatorname{Molarity}(\mathbf{M})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% x 1000}{M w t}$
$M=\frac{1.42 \times\left(\frac{70.5}{100}\right) \times 1000}{63.0}=\frac{1.42 \times 70.5 \times 10}{63.0}=15.9 \mathrm{M}$

Example :

Calculate the molarity of $\mathrm{NaOH}(40 \mathrm{~g} / \mathrm{mole})$ solution of $50\left(\frac{w}{w}\right) \%$ knowing that its specific gravity(sp.gr) is $\mathbf{1 . 5 2 5}$.

Solution:
$\operatorname{Molarity}(\mathrm{M})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% x 1000}{M w t}$

Molarity $(M)=\frac{1.525 \times\left(\frac{50}{100}\right) \times 1000}{40}=\frac{1.525 \times 50 \times 10}{40}=19.06 \mathrm{M}$

Example:

Describe the preparation of $(100 \mathrm{~mL})$ of $(6 \mathrm{M}) \mathbf{H C l}$ from its concentrated solution that is $37.1 \%(w / w) \mathbf{H C l}(36.5 \mathrm{~g} / \mathrm{mole})$ and has specific gravity (sp.gr) of (1.181) .

Solution:

$$
\mathrm{M}_{\mathrm{HCl}}=\frac{\operatorname{sp\cdot gr} x\left(\frac{w}{w}\right) \% x 1000}{M w t}
$$

$$
\mathrm{M}_{\mathrm{HCl}}=\frac{1.181 \times \frac{37.1}{100} \times 1000}{36.5}
$$

$$
M_{\mathrm{HCl}}=\frac{1.181 \times 37.1 \times 1000}{36.5 \times 100}
$$

$M_{H C l}=\frac{1.181 \times 37.1 \times 10}{36.5}=12 \mathrm{M}$
The Molarity of the concentrated acid is $\mathbf{1 2} \mathbf{M}$
الان نذهب الى قانون التخفيف لحسـاب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (100 مللتر في هذا المثال) وكمايلم:

No. of moles of Conc. solution $=$ No. of moles of dil. Solution
also
No. of \mathbf{m} moles of Conc. solution $=$ No. of \mathbf{m} moles of dil. Solution
$\mathbf{M}_{\text {conc. }} \mathbf{V}_{\text {conc. }}=\mathbf{M}_{\text {dil. }} \mathbf{V}_{\text {dil. }}$
$12 \times V_{\text {conc }}=6 \times 100$
$V_{\text {conc }}=\frac{6 \times 100}{12}=50 \mathrm{~mL}$.
Then 50 mL of concentrated acid is to be diluted to 100 mL to give $\mathbf{6} \mathrm{M}$ solution

Example:

Describe the preparation of 500 mL of $3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(98 \mathrm{~g} / \mathrm{mole})$ from the commercial reagent that is $\mathbf{9 3 \%} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{w} / \mathrm{w})$ and has a specific gravity of 1.830 .

Solution:

1. We have to calculate the concentration of the original conc. Solution
$\mathbf{M ~}_{\mathbf{H 2 S O}}=\frac{\text { sp.gr } x \% \times 1000}{M . w t}$
$M_{\text {H2SO4 }}=\frac{1.830 \times \frac{93}{100} \times 1000}{98}$
$M_{\mathrm{H} 2 \mathrm{SO} 4}=\frac{1.830 \times 93 \times 1000}{98 \times 100}$
$M_{\mathrm{H} 2 \mathrm{SO} 4}=\frac{1.830 \times 93 \times 10}{98}=17.37 \mathrm{M}$

لحساب الحجم المطلوب اخذّه من الحامض المركز وتخفيفه الى الحجم المطلوب (500 مللتر في هذا المثال) نطبق قانون التخفيف التالي:
$\mathbf{M}_{\text {conc. }} \mathbf{V}_{\text {conc. }}=\mathbf{M}_{\text {dil. }} \mathbf{V}_{\text {dil }}$.
$17.37 \times V_{\text {conc }}=3 \times 500$
$V_{\text {conc }}=\frac{3 \times 500}{17.37}=\mathbf{8 6 . 3 6} \mathbf{m L}$.
Then 86.36 mL of concentrated acid is to be diluted to 500 mL to give $\mathbf{3} \mathbf{~ M}$ solution.

Calculation of the Normality of liquids

Normality of liquid($\mathbf{N})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% \times 1000}{e q \cdot w t}$

Example:

Describe the preparation of 500 mL of $3 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}(98 \mathrm{~g} / \mathrm{mole})$ from the commercial reagent that is $\mathbf{9 6 \%} \mathbf{H}_{2} \mathrm{SO}_{4}(\mathrm{w} / \mathrm{w})$ and has a specific gravity of 1.840 .

Solution:
$\mathbf{M}_{\text {H2SO4 }}=\frac{\text { sp.gr } x \% \times 1000}{\text { eq.wt }}$
eq. $\mathrm{wt}=\frac{M w t}{\eta}$

For $\mathrm{H}_{2} \mathrm{SO}_{4} \quad \boldsymbol{\eta}=\mathbf{2}$ then
eq.wt $=\frac{98}{2}=49$
Normality $\left(\mathbf{N}_{\mathbf{H} 2 \mathrm{SO}}\right)=\frac{1.840 \times \frac{96}{100} \times 1000}{49}$
Normality $\left(\mathbf{N}_{\mathbf{H 2 S O}}\right)=\frac{1.840 \times 96 \times 1000}{49 \times 100}$
Normality $\left(\mathrm{N}_{\mathrm{H} 2 \mathrm{SO}}\right.$) $)=\frac{1.840 \times 96 \times 10}{49}=36.04 \mathrm{~N}$
The Normality of the concentrated acid is $36.04 \mathbf{N}$

لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (500 مللتر في هذا المثّال) نطبق قانون التخفيف التالي:
$\mathbf{N}_{\text {conc. }} \mathbf{V}_{\text {conc. }}=\mathbf{N}_{\text {dil. }} \mathbf{V}_{\text {dil }}$.
$36.04 \times V_{\text {conc }}=3 \times 500$

$$
V_{c o n c}=\frac{3 \times 500}{36.04}=41.62 \mathrm{~mL}
$$

Then 41.62 mL of concentrated acid is to be diluted to 500 mL to give $\mathbf{3 N}$ solution.

Example:
A Nurse is preparing for an intravenous administration of glucose $\mathbf{C}_{6} \mathbf{H}_{12} \mathrm{O}_{6}$ ($180 \mathrm{~g} /$ mole) How many mL of the solution of $5 \%(\mathrm{w} / \mathrm{w})$ glucose, its specific gravity is 1.020 , will be needed to provide 1.25 g of glucose?

Solution:
Molarity (M) $=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% \times 1000}{M w t}$
Molarity $(M)=\frac{1.020 \times\left(\frac{5}{100}\right) \times 1000}{180}=0.283 \quad \mathrm{M}$
Weight $(\mathrm{g})=\operatorname{molarity}(\mathrm{M}) \times \mathrm{V}(\mathrm{L}) \times$ M.wt
Weight of glucose $(\mathrm{g})=1.25 \mathrm{~g}=\mathbf{0 . 2 8 3}(\mathrm{M}) \times \mathrm{V}(\mathrm{L}) \times 180$
Volume needed $=\frac{1.25}{0.283 \times 180}=0.0245 \mathrm{~L}=24.5 \mathrm{~mL}$

Example:

A solution of $6.42(\mathbf{w} / \mathbf{w}) \%$ of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(241.86 \mathrm{~g} / \mathrm{mole})$ has a specific gravity of 1.059. Calculate:
(a) the molar concentration of this solution.
(b) the mass in grams of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ contained in each liter of this solution

solution:

a) To calculate the molar concentration of the solution
$\mathbf{M}_{\text {Fe(NO3) }}=\frac{\text { sp.gr x } \% \times 1000}{M w t}$
$\mathrm{M}_{\mathrm{Fe}(\mathrm{NO} 3) 3}=\frac{1.059 \times \frac{6.42}{100} \times 1000}{241.86}=0.281$
(b) the mass in grams of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ contained in each liter of this solution(i.e: the concentration of solution in g / L).
Weight (g) = Molarity \mathbf{x} volume(liter) x M.wt
Weight $=0.281 \times 1$ liter $\times 241.86=67.96 \mathrm{~g}$
The concentration of solution in $g / L=67.96 \mathrm{~g} / \mathrm{L}$

Second method:
$\operatorname{Molarity}(M)=\frac{\mathrm{wt}_{(\mathrm{g})} \times 1000}{\operatorname{M.wt} \times V_{\mathrm{mL}}}$
$\mathbf{w t}(\mathbf{g})=\frac{\operatorname{Molarity}(\mathrm{M}) \times \mathrm{M} . \mathrm{wt} \times \mathrm{V}_{\mathrm{mL}}}{1000}$
$w t(g)=\frac{0.281 \times 241.86 \times 1000 \mathrm{~mL}}{1000}=67.96 \mathrm{~g}$

Example:
A 12.5\% (w/w) aqueous solution of NiCl_{2} ($129.61 \mathrm{~g} / \mathrm{mole}$) has specific gravity of 1.149. Calculate:
(a) the Molarity of $\mathbf{N i C l}_{2}$ in this solution.
(b) the molar concentration of Cl^{-}in the solution.
(c) the mass in grams of NiCl_{2} contained in 500 mL of this solution.

Answer:
(a) the Molarity of NiCl_{2} in this solution

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{NiCl} 2}=\frac{s p . g r x \% x 1000}{M w t} \\
& \mathrm{M}_{\mathrm{NiCl} 2}=\frac{1.149 \times \frac{6.42}{100} \times 1000}{129.61}=0.569 \mathrm{M}
\end{aligned}
$$

(b) the molarity of Cl^{-}concentration in the solution.

$$
\mathbf{N i C l}_{2} \longrightarrow \mathbf{N i}^{2+}+2 \mathbf{C l}^{-}
$$

Each 1 mole gives 1 mole 2 mole

Molarity of $\mathbf{C l}^{-}=2 \times$ Molarity of $\mathbf{N i C l}_{2}$
Molarity of $\mathrm{Cl}^{-}=2 \times 0.569=1.138 \mathrm{M}$
(c) the mass in grams of NiCl_{2} contained in 500 mL of this solution.

Weight (g) = Molarity \mathbf{x} volume (liter) \mathbf{x} M.wt
Weight $=0.569 \times\left(\frac{500}{1000}\right) \mathrm{L} \times 129.61=36.87 \mathrm{~g}$

Example:

A solution was prepared by dissolving 327.8 mg of $\mathrm{Na}_{3} \mathrm{PO}_{4}(163.9 \mathrm{~g} / \mathrm{mole})$ in sufficient amount of water to give $\mathbf{7 5 0} \mathbf{~ m L}$. Calculate:
A) The Molarity and Normality of the solution
B) the Molar concentration of $\mathbf{N a}^{+}$in the solution.
solution:
A) The Molarity and Normality of the solution
$\operatorname{Molarity}(M)=\frac{\mathrm{wt}_{(\mathrm{g})} \times 1000}{\mathrm{M} . \mathrm{wt} \mathbf{x} \mathrm{V}_{\mathrm{mL}}}$
Weight of $\mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{~g})=\frac{327.8 \mathrm{mg}}{1000}=0.3278 \mathrm{~g}$
$\operatorname{Molarity}(M)=\frac{0.3278 \times 1000}{163.9 \times 750}=0.00267 \mathrm{M}=2.67 \times 10^{-3} \mathrm{M}$
$\operatorname{Normality}(\mathbf{N})=\operatorname{Molarity}(\mathbf{M}) \mathbf{x} \boldsymbol{\eta}$
$(\boldsymbol{\eta})=\Sigma$ [no. of cations x its valency (cation charge)]
For $\mathrm{Na}_{3} \mathrm{PO}_{4}(\boldsymbol{\eta})=\Sigma\left[3 \mathrm{Na}^{+} \mathbf{x}(+1)\right]=3$
Normality $(\mathrm{N})=2.67 \times 10^{-3} \times 3=8.01 \times 10^{-3} \mathrm{~N}$
B) the Molar concentration of Na^{+}in the solution.
$\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathbf{3} \mathrm{Na}^{+}+\mathbf{P O}_{4}{ }^{3-}$
1 mole 3 mole
Molarity of $\mathrm{Na}^{+}=3 \times$ Molarity of $\mathrm{Na}_{3} \mathrm{PO}_{4}$
Molarity of $\mathrm{Na}^{+}=3 \times 2.67 \times 10^{-3}=8.01 \times 10^{-3} \mathrm{M}$

Example :

The concentration of an aqueous solution of $\mathbf{N a O H}(\mathbf{4 0} \mathbf{g} / \mathrm{mole})$ is $\mathbf{1 0 \%}$ $(\mathrm{w} / \mathrm{w}) \%$. The density of the solution is $1.070 \mathrm{~g} / \mathrm{mL}$. Calculate: a)molarity, b)molality and c) mole fraction of NaOH in water.

Solution:

a)Molarity $(\mathbf{M})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% \times 1000}{M w t}$

Molarity $(M)=\frac{1.070 \times\left(\frac{10}{100}\right) \times 1000}{40}=2.675 \mathrm{M}$
b) Molality

Molality $(\mathrm{m})=\frac{\text { No.of moles of } \mathrm{NaOH} \times 1000}{\text { weight of water }(\text { solvent })}$
2.675 M = $\mathbf{2 . 6 7 5}$ mole /liter

Weight of $\mathrm{NaOH} \mathrm{g}=\operatorname{molarity}(\mathrm{M}) \times \mathrm{V}(\mathrm{L}) \times$ M.wt
Weight of $\mathrm{NaOH} \mathrm{g}=2.675 \times 1(\mathrm{~L}) \times 40=107 \mathrm{~g}$
No. of moles of NaOH (solute) $=\frac{\text { weight }}{M w t}=\frac{107}{40}=2.675$
Weight of 1 Lof NaCl solution $\mathrm{g}=$ density \times volume $=1.070 \times 1000=1070 \mathrm{~g}$
Weight of water (solvent) $\mathrm{g}=1070 \mathbf{- 1 0 7}=\mathbf{9 6 3} \mathrm{g}$
Molality $(\mathrm{m})=\frac{\text { No.of moles of } \mathrm{NaOH} \times 1000}{\text { weight of water }(\text { solvent })}=\frac{2.675 \times 1000}{963}=2.778$
c) Mole fraction

Moles of water $($ solvent $)=\frac{963}{18}=53.5$
Mole fraction of $\mathrm{NaOH}=\frac{2.675}{2.675+53.5}=\mathbf{0 . 0 4 8}$
Mole fraction of water $=\frac{53.5}{2.675+53.5}=\mathbf{0 . 9 5 2}$

Exercise:

The concentration of the aqueous solution of glucose ($180 \mathrm{~g} / \mathrm{mole}$) is $10 \%(\mathrm{w} / \mathrm{w})$ and its density is $1.20 \mathrm{~g} / \mathrm{mL}$. Calculate:
a) molarity
b) molality and c) mole fraction of the solution.

