Chapter Three
Gases, Vapors, Liquids, and Solids

X Property is meaning any measurable characteristic of a substance, such as pressure, volume, or temperature, or a characteristic that can be calculated or deduced, such as internal energy.

区 State and Equilibrium A system will possess a unique set of properties, such as temperature, pressure, density, and so on, at a given time, and thus is said to be in a particular state. A change in the state of the system results in a change in at least one of its properties.
® By equilibrium we mean a state in which there is no tendency toward spontaneous change. When a system is in equilibrium with another system, or the surroundings, it will not change its state unless the other system, or the surroundings, also changes.

A phase is defined as a completely homogeneous and uniform state of matter. Liquid water would be a phase; ice would be another phase. Two immiscible liquids in the same container, such as mercury and water, would represent two different phases because the liquids have different properties.

3.1 Ideal Gas Law Calculations

The Ideal Gas Law

Under conditions such that the average distance between the molecules in a substance is great enough to neglect the effect of the intermolecular forces and the volume of the molecules themselves, a gas can be termed an ideal gas. More properly, an ideal gas is an imaginary gas that obeys exactly the following relationship

$$
\begin{equation*}
p V=n R T \tag{1}
\end{equation*}
$$

Where $p=$ absolute pressure of the gas
$V=$ total volume occupied by the gas
$n=$ number of moles of the gas
$R=$ ideal gas constant in appropriate units
$T=$ absolute temperature of the gas
Sometimes the ideal gas law is written as

$$
\begin{equation*}
p \hat{V}=\boldsymbol{R} \boldsymbol{T} \tag{1a}
\end{equation*}
$$

Where \hat{V} is the specific volume (volume per mole or mass) of the gas.

Table 1 Common Standard Conditions for the Ideal Gas			
System	T	P	\hat{V}
SI	273.15 K	101.325 kPa	$22.415 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{mol}$
Universal scientific	$0.0^{\circ} \mathrm{C}$	760 mm Hg	22.415 liters $/ \mathrm{g} \mathrm{mol}$
Natural gas industry	$60.0^{\circ} \mathrm{F}$ $\left(15.0^{\circ} \mathrm{C}\right)$	14.696 psia $(101.325 \mathrm{kPa})$	$379.4 \mathrm{ft}^{3} / \mathrm{lb} \mathrm{mol}$
American engineering	$32^{\circ} \mathrm{F}$	1 atm	$359.05 \mathrm{ft}^{3} / \mathrm{lb} \mathrm{mol}$

Example 1

Calculate the volume, in cubic meters, occupied by 40 kg of CO_{2} at standard conditions.

Solution

Basis: 40 kg of $\mathrm{CO}_{\mathbf{2}}$

$40 \mathrm{~kg} \mathrm{CO}_{2}$	1 kg mol CO	
2	$22.42 \mathrm{~m}^{3} \mathrm{CO}_{2}$	
	$44 \mathrm{~kg} \mathrm{CO}_{2}$	1 kg mol CO
2		

Example 2

Find the value for the universal gas constant \boldsymbol{R} for the following combinations of units: For 1 g mol of ideal gas when the pressure is in atm, the volume in cm^{3}, and the temperature in K .

Solution

At standard conditions we will use the approximate values

$$
\begin{aligned}
& P=1 \mathrm{atlm} \\
&-\quad \dot{V}=22,415 \mathrm{~cm}^{3} / \mathrm{g} \text { mol } \\
& T=273.15 \mathrm{~K} \\
& R=\frac{p \hat{V}}{T}=\frac{1 \mathrm{~atm}}{273.15 \mathrm{~K}} 22,415 \mathrm{~cm}^{3} \\
& \hline
\end{aligned}
$$

In many processes going from an initial state to a final state, you can use the ratio of ideal gas law in the respective states and eliminate R as follows (the subscript 1 designates the initial state, and the subscript 2 designates the final state)

$$
\frac{p_{1} V_{1}}{p_{2} V_{2}}=\frac{n_{1} N T_{1}}{n_{2} R T_{2}}
$$

or

$$
\begin{equation*}
\left(\frac{p_{1}}{p_{2}}\right)\left(\frac{V_{1}}{V_{2}}\right)=\left(\frac{n_{1}}{n_{2}}\right)\left(\frac{T_{1}}{T_{2}}\right) \tag{2}
\end{equation*}
$$

Example 3

Calculate the volume occupied by 88 lb of $\mathbf{C O}_{\mathbf{2}}$ at a pressure of 32.2 ft of water and at $15^{\circ} \mathrm{C}$

Solution

The final volume can be calculated via Equation 13.2 in which both \mathbf{R} and $\mathbf{n}_{\mathbf{1}} / \mathbf{n}_{\mathbf{2}}$ cancel out:

$$
V_{2}=V_{1}\left(\frac{p_{1}}{m_{2}}\right)\left(\frac{T_{2}}{T_{1}}\right)
$$

Assume that the pressure is absolute pressure.

$$
\begin{aligned}
& \frac{\text { AIS.C. (statel) })}{P=3.3 .91 \mathrm{ft} \mathrm{H}}{ }_{2} \mathrm{O} \\
& T=273 \mathrm{~K}
\end{aligned}
$$

At state 2
$p=32.2 \mathrm{ft} \mathrm{H}_{2} \mathrm{O}$
$T=273+15=288 \mathrm{~K}$

Basis: 88 th of CO_{2}

88 lb CO 2		$359 \mathrm{ft}^{3}$	288	33.91	$798 \mathrm{ft}^{3} \quad \mathrm{CO}_{2}$
	$\begin{aligned} & 44 \mathrm{H} \mathrm{CO}_{2} \\ & 1 \mathrm{~m} \mathrm{~mol} \mathrm{CO} \end{aligned}$	1 lb mol	273	32.2	at $32.2 \mathrm{ft} \mathrm{H}_{2} \mathrm{O}$ and $15^{\circ} \mathrm{C}$
L					

Another solution

The same results can be obtained by using Eq. 1

$$
R=\frac{p V}{T}
$$

At S.C.,

$$
\begin{aligned}
& p=33.91 \mathrm{fH}_{2} \mathrm{O} \\
& V=359 \mathrm{ft}^{3} / \mathrm{lb} \mathrm{~mol} \\
& T=273 \mathrm{~K} \\
& R=\begin{array}{l|l}
33.91 & 359 \\
\hline & 27.3
\end{array}=44.59 \frac{\left(\mathrm{ft} \mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{ft}^{3}\right)}{(1 \mathrm{~b} \mathrm{~mol})(\mathrm{K})} \\
& \text { Basis: } 88 \mathrm{lh} \text { of } \mathrm{CO}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =798 \mathrm{ft}^{3} \mathrm{CO}_{2} \text { all } 32.2 \mathrm{HH}_{2} \mathrm{O} \text { and } 15^{\circ} \mathrm{C}
\end{aligned}
$$

The Gas Density

The density of a gas is defined as the mass per unit volume and can be expressed in kilograms per cubic meter, pounds per cubic foot, grams per liter, or other units

Example 4

What is the density of N_{2} at $27^{\circ} \mathrm{C}$ and 100 kPa in SI units?

Solution
Basis: $1 \mathrm{mb}^{3}$ ol N_{2} al $27^{\circ}{ }^{\circ}$ and 100 KPa

$1 \mathrm{ml}^{3}$	273 K	100 kPa	1 kg mol	28 kg
	300 K	101.3 kPa	$22.4 \mathrm{~m}^{3}$	$1 \mathrm{~kg}, \mathrm{~mol}$

$$
\text { deasity }=1.123 \mathrm{~kg} / \mathrm{m}^{1} \mathrm{ol} \mathrm{~N}_{2} \text { al } 27.9(300 \mathrm{k}) \text { and } 100 \mathrm{hla}
$$

The Gas Specific Gravity

The specific gravity of a gas is usually defined as the ratio of the density of the gas at a desired temperature and pressure to that of air (or any specified reference gas) at a certain temperature and pressure.

Example 5

What is the specific gravity of N_{2} at $80^{\circ} \mathrm{F}$ and 745 mm Hg compared to air at $80^{\circ} \mathrm{F}$ and 745 mm Hg ?

Solution

Basis: $1 \mathrm{ft}^{3}$ of air at $80^{\circ} \mathrm{F}$ and 745 mm Hg

1	492	745		29
	540	760	359	

Basis: $1 \mathrm{lt}^{3}$ of N_{2} at $80^{\circ} \mathrm{F}$ and 745 mm Ig

1	492	745		28
	540	760	359	

$(\mathrm{sp} . \text { gr. })_{N_{2}}=\frac{0.0097}{0.0721}=0.967 \frac{\mathrm{lb} \mathrm{N}_{2} / \mathrm{ft}^{3} \text { at } 80^{\circ} \mathrm{F}, 745 \mathrm{~mm} \mathrm{Hg}}{\mathrm{Ib} \text { ait } / \mathrm{ft}^{3} \text { air at } 80^{\circ} \mathrm{F}, 745 \mathrm{~mm} \mathrm{Hg}}$

Note: for gases at the same temperature and pressure, the specific gravity is just the ratio of the respective molecular weights. Let A be one gas and B be another.

$$
\begin{gather*}
p \hat{v}=R T \quad \text { or } \quad p \frac{1}{\rho}=R T \\
\text { Thus sp.gr. }=\frac{\rho_{A}}{\rho_{B}}=\left(\frac{p_{A}}{p_{B}}\right)\left(\frac{m o l . w t \cdot A}{m o l . w t . B}\right)\left(\frac{T_{B}}{T_{A}}\right) \tag{3}
\end{gather*}
$$

Ideal Gas Mixtures and Partial Pressure

The partial pressure of gas; i defined by Dalton, p_{i}, namely the pressure that would be exerted by a single component in a gaseous mixture if it existed by itself in the same volume as occupied by the mixture and at the same temperature of the mixture is

$$
\begin{equation*}
I_{i} V_{\text {tuat }}=n_{i} R I_{\text {tutal }} \tag{4}
\end{equation*}
$$

Where p_{i} is the partial pressure of component i. If you divide Eq. (4) by Eq. (1), you find that
of

$$
\begin{equation*}
r_{i}=r_{1} \frac{n_{1}}{n_{1+1}}=l_{1, t a l} \tag{5}
\end{equation*}
$$

Where y_{i} is the mole fraction of component i. Can you show that Dalton's law of the summation of partial pressures is true using Eq. 13.5?

$$
\begin{equation*}
r_{1}+\prime_{2}+\ldots+r_{1}=r_{1} \tag{6}
\end{equation*}
$$

Although you cannot measure the partial pressure directly with an instrument, you can calculate the value from Eqs. 5 and/or 6 .

Example 6

A flue gas analyzes $14.0 \% \mathrm{CO}_{2}, 6.0 \% \mathrm{O}_{2}$, and $80.0 \% \mathrm{~N}_{2}$. It is at $400^{\circ} \mathrm{F}$ and 765.0 mm Hg pressure. Calculate the partial pressure of each component.

Solution

Use Eq, (13.5) $\quad p_{i}=p_{t} y_{i}$
Basis: 1.00 kg (or lb) mol flue gas

Component	kg (or lb) mol	$p(\mathrm{~mm} \mathrm{Hg}$)
CO_{2}	0.140	107.1
O_{2}	0.060	45.9
$\mathrm{~N}_{2}$	0.800	612.0
Total	1.000	765.0

On the basis of 1.00 mole of flue gas, the mole fraction y of each component, when multiplied by the total pressure, gives the partial pressure of that component.

Real Gas Relationships

ख We have said that at room temperature and pressure many gases can be assumed to act as ideal gases.
囚 However, for some gases under normal conditions, and for most gases under conditions of high pressure, values of the gas properties that you might obtain using the ideal gas law would be at wide variance with the experimental evidence. . You might wonder exactly how the behavior of real gases compares with that calculated from the ideal gas laws.

区 In Fig. 3.2 you can see how the ($p \hat{V}$) product of several gases deviates from that predicted by the ideal gas laws as the pressure increases substantially. Thus it is clear that we need some way of computing the \boldsymbol{p} - $\boldsymbol{V}-\boldsymbol{T}$ properties of a gas that is not ideal, i.e. the real gas.

Figure 1 Deviation of real gases from the ideal gas law at high pressures.

Three methods of getting or predicting real gas properties in lieu of having experimental data:

1. Compressibility charts
2. Equations of state
3. Estimated properties

Critical State, Reduced Parameters, and Compressibility

- The critical state for the gas-liquid transition is the set of physical conditions at which the density and other properties of the liquid and vapor become identical.
- The law of corresponding states expresses the idea that in the critical state all substances should behave alike.
- Refer to Figure 2 in which the states of water are illustrated. As the temperature increases, the density of the liquid and vapor approach each other until finally at $374.14{ }^{\circ} \mathrm{C}$, the values are the same.

Figure 2 The regions of existence of solid, liquid, gaseous, and supercritical water. At the triple point solid, liquid, and gas are all in equilibrium.

* A supercritical fluid, that is, a compound in a state above the critical point, combines some of the properties of both gases and liquids.
* Another set of terms with which you should immediately become familiar are the reduced parameters. These are corrected, or normalized, conditions of temperature, pressure, and volume and are expressed mathematically as

$$
\begin{aligned}
T_{r} & =\frac{T}{T_{c}} \\
p_{r} & =\frac{p}{p_{c}} \\
V_{r} & =\frac{V}{V_{c}}
\end{aligned}
$$

Compressibility Factor (z)

One common way is to modify the ideal gas law by inserting an adjustable coefficient z, the compressibility factor, a factor that compensates for the nonideality of the gas. Thus, the ideal gas law becomes a real gas law, a generalized equation of state.

$$
\begin{equation*}
p V=z n R T \tag{7}
\end{equation*}
$$

* Figure 3 shows the generalized compressibility charts or \underline{z} - factor chart prepared by Nelson and Obert. These charts are based on 30 gases.
Figure 3 (e) is a unique chart that, by having several parameters plotted simultaneously on it, helps you avoid trial-anderror solutions or graphical solutions of real gas problems. One of these helpful parameters is the ideal reduced volume defined as

$$
V_{\mathrm{r}_{\mathrm{i}}}=\frac{\hat{V}}{\hat{V}_{\mathrm{c}_{\mathrm{i}}}}
$$

$V_{\mathrm{c}_{\mathrm{i}}}$ the ideal critical volume (not the experimemal value of the critical volume), or

$$
\hat{V}_{\mathrm{c}_{\mathrm{i}}}=\frac{R T_{\mathrm{c}}}{P_{\mathrm{c}}}
$$

Both $V_{\mathrm{ri}_{\mathrm{i}}}$ and $\hat{V}_{\mathrm{c}_{\mathrm{i}}}$ are easy to calculate since T_{c} and p_{c} are presumed known.

Figure 3(a) Generalized Compressibility Chart, Very Low Reduced Pressure.

Figure 3(b) Generalized Compressibility Chart, Low Pressure.

Figure 3(c) Generalized Compressibility Chart, Medium Pressure.

Figure 3(d) Generalized Compressibility Chart, High Pressure.

Figure 3 (e) Generalized Compressibility Chart, with Special Scales.

Note

The value $\underline{\mathbf{z}=\mathbf{1}}$ represents $\underline{\text { ideality }, ~ a n d ~ t h e ~ v a l u e ~} \underline{\mathbf{z}=\mathbf{0 . 2 7}}$ is the compressibility factor at the critical point.

Example 7

In spreading liquid ammonia fertilizer, the charges for the amount of NH_{3} are based on the time involved plus the pounds of NH_{3} injected into the soil. After the liquid has been spread, there is still some ammonia left in the source tank (volume $=120 \mathrm{ft}^{3}$), but in the form of a gas. Suppose that your weight tally, which is obtained by difference, shows a net weight of 125 lb of NH_{3} left in the tank as a gas at 292 psig . Because the tank is sitting in the sun, the temperature in the tank is $125^{\circ} \mathrm{F}$. Your boss complains that his calculations show that the specific volume of the gas is $1.20 \mathrm{ft}^{3} / \mathrm{lb}$ and hence that there are only 100 lb of NH_{3} in the tank. Could he be correct? See Figure E 3.7.

Figure E 3.7

Solution

Apparently, your boss used the ideal gas law in getting his figure of $1.20 \mathrm{ft}^{3} / \mathrm{lb}$ of NH_{3} gas:

$$
\begin{aligned}
& R=10.73 \frac{(\mathrm{psia})\left(\mathrm{ft}^{3}\right)}{(\mathrm{Ib} \mathrm{~mol})\left({ }^{0} \mathrm{R}\right)} \\
& T=125^{\circ} \mathrm{F}+460=585^{\circ} \mathrm{R} \\
& p=292+14.7=306.7 p \mathrm{sia} \\
& n=\frac{1 \mathrm{It}}{17 \mathrm{Ib} / \mathrm{It} \mathrm{~mol}} \\
& \left.\hat{V}=\frac{R T}{P}=\frac{1^{\frac{1}{7}(10.73)(58.5)}}{306.7}=1.2011^{\prime} / 1 \mathrm{l}\right)
\end{aligned}
$$

However, he should have used the compressibility factor, because NH_{3} does not behave as an ideal gas under the observed conditions of temperature and pressure. Let us again compute the mass of gas in the tank this time using

$$
p V=z n R T
$$

From Appendix D:

$$
\begin{gathered}
T_{\mathrm{c}}=405.5 \mathrm{~K} \simeq 729.9 R \\
p_{\mathrm{c}}=111.3 \mathrm{alm} \simeq 16.36 \mathrm{psia}
\end{gathered}
$$

Then, since z is a finclion of T_{r}, and p_{r},

$$
\begin{aligned}
& T_{i}=\frac{T}{T_{c}}=\frac{585^{\circ} \mathrm{R}}{729.9^{\prime \prime} \mathrm{R}}=0.801 \\
& P_{\mathrm{r}}=\frac{\rho}{I_{c}}=\frac{306.7 \mathrm{psiat}}{16.36 \mathrm{psia}}=0.187
\end{aligned}
$$

From the Nelson and Obert chart, Fig. 13.3 (b), you can read $\mathrm{z}=0.855$. Now \hat{V} can be calculated as

$$
\begin{aligned}
& \hat{V}=\frac{1.20 \mathrm{fr}^{3} \text { ideal }}{\mathrm{m}} \left\lvert\, \frac{0.855}{1}=1.03 \mathrm{Hi}^{\prime} / \mathrm{If} \mathrm{NHI}_{1}\right. \\
& \begin{array}{c|c}
1 \mathrm{H} \mathrm{NH}_{3} & 120 \mathrm{Ht}^{3} \\
\hline 1.0 .3 \mathrm{Ht}^{3} & =117 \mathrm{H} \mathrm{NI}_{3}
\end{array}
\end{aligned}
$$

Note : Certainly 117 lb is a more realistic figure than 100 lb , and it is easily possible to be in error by 8 lb if the residual weight of NH_{3} in the tank is determined by difference. As a matter of interest you might look up the specific volume of NH_{3} at the conditions in the tank in a handbook. You would find that $\hat{V}=0.973 \mathrm{ft}^{3} / \mathrm{lb}$, and hence the compressibility factor calculation yielded a volume with an error of only about 4%.

Example 13.8

Liquid oxygen is used in the steel industry, in the chemical industry, in hospitals, as rocket fuel, and for wastewater treatment as well as many other applications. In a hospital a tank of $0.0284-\mathrm{m}^{3}$ volume is filled with 3.500 kg of liquid O_{2} that vaporized at $-25^{\circ} \mathrm{C}$. Will the pressure in the tank exceed the safety limit of the tank $\left(10^{4} \mathrm{kPa}\right)$?

Solution

Basis: $3.500 \mathrm{~kg} \mathrm{O}_{2}$

We know from Appendix D that

$$
\begin{gathered}
T_{\mathrm{c}}=154.4 \mathrm{~K} \\
p_{\mathrm{c}}=49.7 \mathrm{~atm} \rightarrow 5,035 \mathrm{kPa}
\end{gathered}
$$

$$
\hat{V}(\text { molal volume })=\begin{array}{l|l}
0.0284 \mathrm{~m}^{3} & 32 \mathrm{~kg} \\
\hline 3.500 \mathrm{~kg} & 1 \mathrm{~kg} \mathrm{~mol}
\end{array}=0.260 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{~mol}
$$

Note that the molal volume must be used in calculating $V_{\mathrm{r}_{\mathrm{i}}}$ since $\hat{V}_{\mathrm{c}_{\mathrm{i}}}$ is a volume per mole.

$$
\hat{V}_{\mathrm{c}_{\mathrm{t}}}=\frac{R T_{\mathrm{c}}}{p_{\mathrm{c}}}=\begin{array}{l|l}
8.313\left(\mathrm{~m}^{3}\right)(\mathrm{kPa}) & 154.4 \mathrm{~K} \\
\hline(\mathrm{~kg} \mathrm{~mol})(\mathrm{K}) & 5,035 \mathrm{kPa}
\end{array}=0.255 \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \mathrm{~mol}}
$$

Then

$$
V_{\mathrm{r}_{\mathrm{i}}}=\frac{\hat{\hat{V}}}{\hat{V}_{\mathrm{c}_{\mathrm{i}}}}=\frac{0.260}{0.255}=1.02
$$

Now we know two parameters, $V_{r_{i}}$ and,

$$
T_{\mathrm{r}}=\frac{248 \mathrm{~K}}{154.4 \mathrm{~K}}=1.61
$$

From the Nelson and Obert chart [Fig. 3 (e)],

$$
p_{\mathrm{r}}=1.43
$$

Then

$$
\begin{aligned}
p & =p_{\mathrm{r}} \hat{p_{\mathrm{c}}} \\
= & \\
& =1.43(5,035)=7200 \mathrm{kPa}
\end{aligned}
$$

The pressure of 100 atm will not be exceeded. Even at room temperature the pressure will be less than $10^{4} \mathrm{kPa}$.

13.2.2 Equations of State

* Equations of state relate the $\boldsymbol{p}-V-T$ properties of a pure substance (or mixtures) by theoretical or empirical relations.
* The simplest example of an equation of state is the ideal gas law itself. Table 13.2 lists a few of the commonly used equations of state (from among the hundreds that have been proposed) that involve two or more coefficients.

TABLE 3.2 Equations of State (for 1 Mole)*

Van der Waals:

$$
\begin{aligned}
& \left(p+\frac{a}{\hat{V}^{2}}\right)(\hat{V}-b)=R T \\
& a=\left(\frac{27}{64}\right) \frac{R^{2} T_{c}^{2}}{P_{c}} \\
& b=\left(\frac{1}{8}\right) \frac{R T_{c}}{P_{c}}
\end{aligned}
$$

Dieterici:

$$
p=\frac{R T}{\hat{V}-b} e^{-a / \dot{V} R T}
$$

Berthelot:

$$
p=\frac{R T}{\hat{V}-b}-\frac{a}{T \hat{V}^{2}}
$$

Redlich-Kwong:

$$
\begin{aligned}
& {\left[p+\frac{a}{T^{1 / 2} \hat{V}(\hat{V}+b)}\right](\hat{V}-b)=R T} \\
& a=0.4278 \frac{R^{2} T_{c}^{2.5}}{p_{c}} \\
& b=0.0867 \frac{R T_{c}}{p_{c}}
\end{aligned}
$$

Kammerlingh-Onnes:

$$
p \hat{V}=R T\left(1+\frac{B}{\hat{V}}+\frac{C}{\hat{V}^{2}}+\ldots\right)
$$

Holborn:

$$
p \hat{V}=R T\left(1+B^{\prime} p+C^{\prime} p^{2}+\cdots\right)
$$

Beattie-Bridgeman:

$$
\begin{aligned}
p \hat{V} & =R T+\frac{\beta}{\hat{V}}+\frac{\gamma}{\hat{V}^{2}}+\frac{\delta}{\hat{V}^{3}} \\
\beta & =R T B_{0}-A_{0}-\frac{R c}{T^{2}} \\
\gamma & =-R T B_{0} b+a A_{0}-\frac{R B_{0} c}{T^{2}} \\
\delta & =\frac{R B_{0} b c}{T^{2}}
\end{aligned}
$$

Benedict-Webb-Rubin:

$$
p \hat{V}=R T+\frac{\beta}{\hat{V}}+\frac{\sigma}{\hat{V}^{2}}+\frac{\eta}{\hat{V}^{4}}+\frac{w}{\hat{V}^{3}}
$$

$$
\beta=R T B_{0}-A_{0}-\frac{C_{0}}{T^{2}}
$$

$$
\sigma=b R T-a+\frac{c}{T^{2}} \operatorname{cxp}\left(-\frac{\gamma}{\hat{V}^{2}}\right)
$$

$$
\eta=c y \exp \left(-\frac{\gamma}{\hat{V}^{2}}\right)
$$

$$
w=a \alpha
$$

Peng-Robinson:
$p=\frac{R T}{\hat{V}-b}-\frac{a \alpha}{\hat{V}(\hat{V}+b)+b(\hat{V}-b)}$
$a=0.45724\left(\frac{R^{2} T_{c}^{2}}{p_{c}}\right)$
$b=0.07780\left(\frac{R T_{c}}{p_{c}}\right)$
$\alpha=\left[1+\kappa\left(1-T_{r}^{1 / 2}\right)\right]^{2}$
$\kappa=0.37464+1.54226 \omega-0.26992 \omega^{2}$
$\omega=$ acentric factor (see p. 275)

- Van der Waals equation can easily be solved explicitly for (p) as follows:

$$
p=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}
$$

However, if you want to solve for V (or n$)$, you can see that the equation becomes cubic in V (or n):

$$
f(V)=V^{3}-\left(n b+\frac{n R T}{p}\right) V^{2}+\frac{n^{2} a}{p} V-\frac{n^{3} a b}{p}=0
$$

And can have multiple roots. We want a positive real root. Computer programs can solve nonlinear equations and can be used to solve for \mathbf{V} if you have a reasonable initial guess for \mathbf{V}, say from the ideal gas law.

Example 13.9

A cylinder $0.150 \mathrm{~m}^{3}$ in volume containing 22.7 kg of propane $\mathrm{C}_{3} \mathrm{H}_{8}$ stands in the hot sun. A pressure gauge shows that the pressure is 4790 kPa gauge. What is the temperature of the propane in the cylinder? Use van der Waals equation.

Solution

Basis: 22.7 kg of propatme

$$
\begin{gathered}
a=9.24 \times 10^{6} \mathrm{alm}\left(\frac{\mathrm{~cm}}{\mathrm{~g} \| \mathrm{m}}\right)^{2} \\
l=90.7 \frac{\mathrm{~cm}}{\mathrm{gmol}} \\
\rho+\left(\frac{n^{2} a}{V^{2}}\right)(V-n l)=n R^{\prime} l
\end{gathered}
$$

All the additional information you need is as lollows:

$$
\begin{aligned}
& p=\begin{array}{l|l}
(4790)+101) k P^{\prime} a & 1 \mathrm{alm} \\
101.3 \mathrm{Kl}: a
\end{array}=48.3 \mathrm{allmabs} \\
& R \text { in the proper units is }=\frac{82.0\left(6\left(\mathrm{~cm}^{3}\right)(a l m)\right.}{(g \text { mol })(K)} \\
& n=\frac{22.7}{44 \mathrm{~kg} / \mathrm{kg} \mathrm{~mol}}=0.516 \mathrm{~kg} \text { mol propane } \\
& {\left[48.3+\frac{\left(0.516 \times 10^{3}\right)^{2}\left(9.24 \times 10^{6}\right)}{\left(0.150 \times 10^{61}\right)^{2}}\right] 0.1 .50 \times 10^{6}} \\
& -\left(0.516 \times 10^{3}\right)(90.7) \mid=\left(0.516 \times 10^{3}\right)(82.06)\left(T_{\mathrm{K}}\right) \\
& T=384 \mathrm{~K}
\end{aligned}
$$

3.2.3 Gaseous Mixtures

In Kay's method, pseudocritical values for mixtures of gases are calculated on the assumption that each component in the mixture contributes to the pseudocritical value in the same proportion as the number of moles of that component. Thus the pseudocritical values are computed as follows:

$$
\begin{align*}
& r_{\mathrm{c}}^{\prime}=p_{\mathrm{c}_{\mathrm{A}}} y_{\mathrm{A}}+p_{\mathrm{c}_{\mathrm{B}}} y_{\mathrm{B}}+\cdots \tag{8a}\\
& T_{\mathrm{c}}^{\prime}=T_{\mathrm{c}_{\mathrm{A}}} y_{\mathrm{A}}+T_{\mathrm{c}_{\mathrm{B}}} y_{\mathrm{B}}+\cdots \tag{8b}
\end{align*}
$$

Where $p_{c}^{\prime}=$ pseudocritical pressure and $T_{c}^{\prime}=$ pseudocritical temperature. (It has also been found convenient in some problems to calculate similarly a weighted pseudo-ideal-critical volume $V_{c i}^{\prime}$.)

Then the respective pseudo-reduced values are

$$
\begin{aligned}
& p_{r}^{\prime}=\frac{p}{p_{c}^{\prime}} \\
& T_{r}^{\prime}=\frac{T}{T_{c}^{\prime}}
\end{aligned}
$$

Example 10

A gaseous mixture has the following composition (in mole percent):
Methane, $\mathrm{CH}_{4} \quad 20$
Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4} \quad 30$
Nitrogen, $\mathrm{N}_{2} \quad 50$
at 90 atm pressure and $100^{\circ} \mathrm{C}$. Compare the volume per mole as computed by the methods of:
(a) the perfect gas law
(b) the pseudoreduced technique (Kay's method)

Solution

Basis: 1 g mol of gas mixture
Additional data needed are:

Component	$T_{\mathrm{c}}(\mathrm{K})$	$p_{\mathrm{c}}(\mathrm{atm})$
CH_{4}	191	45.8
$\mathrm{C}_{2} \mathrm{H}_{4}$	283	50.5
$\mathrm{~N}_{2}$	126	33.5

$$
R=82.06 \frac{\left(\mathrm{~cm}^{3}\right)(\mathrm{atm})}{(\mathrm{g} \mathrm{~mol})(\mathrm{K})}
$$

(a) Perfect gas law:

$$
\hat{V}=\frac{R T}{p}=\frac{1(82.06)(373)}{90}=340 \mathrm{~cm}^{3} \text { at } 90 \mathrm{~atm} \text { and } 373 \mathrm{~K}
$$

(b) According to Kay's method, we first calculate the pseudocritical values for the mixture

$$
\begin{aligned}
p_{\mathrm{c}}^{\prime} & =p_{\mathrm{c}_{\mathrm{\Lambda}}} y_{\mathrm{A}}+p_{\mathrm{c}_{\mathrm{B}}} y_{\mathrm{B}}+p_{\mathrm{c}_{\mathrm{C}}} y_{\mathrm{C}}=(45.8)(0.2)+(50.5)(0.3)+(33.5)(0.5) \\
& =41.2 \mathrm{~atm}
\end{aligned}
$$

$$
T_{\mathrm{c}}^{\prime}=T_{\mathrm{c}_{\mathrm{A}}} y_{\mathrm{A}}+T_{\mathrm{c}_{\mathrm{B}}} y_{\mathrm{B}}+T_{\mathrm{c}_{\mathrm{C}}} y_{\mathrm{C}}=(191)(0.2)+(283)(0.3)+(126)(0.5)
$$

$$
=186 \mathrm{~K}
$$

Then we calculate the pseudo-reduced values for the mixture

$$
p_{\mathrm{r}}^{\prime}=\frac{p}{p_{\mathrm{c}}^{\prime}}=\frac{90}{41.2}=2.18, \quad T_{\mathrm{r}}^{\prime}=\frac{T}{T_{\mathrm{c}}^{\prime}}=\frac{373}{186}=2.01
$$

With the aid of these two parameters we can find from Figure 13.3(c) $z=0.965$. Thus

$$
\hat{V}=\frac{z R T}{p}=\frac{0.965(1)(82.06)(373)}{90}=328 \mathrm{~cm}^{3} \text { at } 90 \mathrm{~atm} \text { and } 373 \mathrm{~K}
$$

Note

In instances in which the temperature or pressure of a gas mixture is unknown, to avoid a trial - and - error solution using the generalized compressibility charts, you can compute the pseudocritical ideal volume and a pseudoreduced ideal reduced volume $V_{r i}$ thus

$$
\hat{V}_{v_{i}^{\prime}}^{\prime-}=\frac{R T_{c}^{\prime}}{P_{i}^{\prime}} \quad \text { anl } \quad \hat{V}_{i}^{\prime}=\frac{\hat{V}}{V_{v_{i}}^{\prime}}
$$

$\hat{V}_{r_{i}}^{\prime}$ can be used in lien of $\rho_{\mathrm{r}}^{\prime}$ or $I_{\mathrm{r}}^{\prime \prime}$ in the compressibility chants.

Vapor Pressure and Liquids

区 The terms vapor and gas are used very loosely. From now on, the word vapor will be reserved to describe a gas below its critical point in a process in which the phase change is of primary interest, while the word gas or noncondensable gas will be used to describe a gas above the critical point or a gas in a process in which it cannot condense.
® If the vapor and liquid of a pure component are in equilibrium, then the equilibrium pressure is called the vapor pressure (see Figure 13.4).

Figure 13.4 Vapor-pressure curve for water.

* Any substance has an infinite number of boiling points, but by custom we say the "normal" boiling point is the temperature at which boiling takes place under a pressure of $1 \mathrm{~atm}(101.3 \mathrm{kPa}, 760 \mathrm{~mm} \mathrm{Hg})$. (see Figure 13.5)
* When the solid passes directly into the vapor phase without first melting to become a liquid (line J-K as opposed to line L-M-N-O in Figure 13.4) it is said to sublime.

Vígirel 3.5 'lianstormallon or liguid water into vapor al constant pressure. The 101.3 kl 'i exeried by the piston includes the force of the atmosplere above the piston.

Figure1 3.6 Transformation of liquid water into water vapor at a constant temperature by changing the imposed pressure.

* Another new term you will find used frequently is the word quality. A wet vapor consists of saturated vapor and saturated liquid in equilibrium. The mass fraction of vapor is known as the quality (\boldsymbol{x}).

Change of Vapor Pressure with Temperature

You can see from Figure 13.4 that the function of p^{*} versus T is not a linear Function (except as an approximation over a very small temperature range).

We will use the Antoine equation - it has sufficient accuracy for our needs:

$$
\begin{equation*}
\ln p^{*}=A-\frac{B}{C+T} \tag{9}
\end{equation*}
$$

Where $A, B, C=$ constants different for each substance $T=$ temperature, K

Example 11

Calculate the vapor pressure of benzene at $50^{\circ} \mathrm{C}$ using the Antoine Equation. Also estimate the normal boiling point of benzene (the vapor pressure at 1 atm).

Solution

$$
\text { Antoine Equation } \quad \ln \left(\mathrm{p}^{*}\right)=\mathrm{A}-\frac{\mathrm{B}}{\mathrm{C}+\mathrm{T}}
$$

From Appendix G in the text the coefficients are
Benzene:

$$
\begin{array}{ll}
\mathrm{A}=15.9008 & \mathrm{~T}=\mathrm{K} \\
\mathrm{~B}=2788.51 & \mathrm{p}^{*}=\mathrm{mmHg} \\
\mathrm{C}=-52.36 &
\end{array}
$$

a. Vapor Pressure of benzene at $50^{\circ} \mathrm{C}$

$$
\ln \left(\mathrm{p}^{*}\right)=15.9008-\frac{2788.51}{-52.36+(50+273)}
$$

$$
\mathrm{p}^{*}=270 \mathrm{mmHg} \text { abs }
$$

b. At the boiling point the vapor pressure is 1 atm (760 mmHg abs.)

$$
\ln (760)=15.9008-\frac{2788.51}{-52.36+\mathrm{T}}
$$

Solving, $T=353.3 \mathrm{~K}$

Liquid Properties

Often making density a linear function of temperature that is independent of pressure provides sufficiently accurate predictions

$$
\begin{equation*}
\rho=\rho_{0}-\beta\left(T-T_{0}\right) \tag{10}
\end{equation*}
$$

Where ρ_{o} and β are constants and ρ is the density of the liquid. Most liquids can be considered to be incompressible, that is, their density is independent of pressure.
For compounds with like molecular structures, such as hydrocarbons of similar molecular weight, called ideal liquids, the density of a liquid mixture can be approximated by assuming that the weighted specific volumes are additive:

$$
\begin{equation*}
\hat{V}_{\text {average }}=x_{1} \hat{V}_{1}+x_{2} \hat{V}_{2}+\cdots x_{n} \hat{V}_{n}=\sum_{i=1}^{n} x_{i} \hat{V}_{i} \tag{11}
\end{equation*}
$$

Where \mathbf{n} is the number of components in the mixture. For nonideal liquids or solids dissolved in liquids, experimental data or estimation techniques described in many of the references, as the specific volumes are not additive.

Saturation

Figure below shows that the volume of the air plus the water vapor increases until the air is saturated with water vapor, after which stage the volume remains constant.

Evaporation of water at constant pressure and temperature of $65^{\circ} \mathrm{C}$

Assuming that the ideal gas law applies to both air and water vapor with excellent precision, we can say that the following relations hold at saturation:

$$
\frac{p_{\mathrm{air}} V}{\mu_{H_{2},} V}=\frac{n_{\mathrm{ain}} R T}{n_{H_{2} \mathrm{O}} R T}
$$

Or

$$
\frac{p_{\mathrm{air}}}{p_{\mathrm{H}_{2} \mathrm{O}}}=-\frac{n_{\text {air }}}{n_{\mathrm{H}_{2} \mathrm{O}}}=\frac{p_{\text {air }}}{p_{\text {totat }}-p_{\text {air }}}
$$

in a volume V at temperature T .

Example 12

What is the minimum number of cubic meters of dry air al $20^{\circ} \mathrm{C}$ and 100 kpa necessary to evaporate 6.0 kg of ethyl alcohol if the total pressure remains constant al 100 kpa and the temperature remains $20^{\circ} \mathrm{C}$? Assume that the air is blown through the alcohol to evaporate it in such a way that the exit pressure of the air alcohol mixture is at 100 kPa . (Given: p^{*} alcohol at $20^{\circ} \mathrm{C}=5.93 \mathrm{kPa}$, mol. wt. ethyl alcohol $=46.07$).

Solution

See Figure E13.12. Assume that the process is isothermal.

Figure E13.12

Basis: 6 kg of alcohol

$$
\begin{gathered}
\frac{r_{\text {atcontal }}^{*}}{l_{\text {ial }}^{\prime}}=\frac{n_{\text {atrahal }}}{n_{\text {ain }}} \\
p_{\text {air }}=p_{\text {total }}-p_{\text {alcohol }}^{*}=(100-5.93) \mathrm{kPa}=94.07 \mathrm{kPa}
\end{gathered}
$$

$$
\begin{array}{c|c|c}
6.0 \mathrm{~kg} \text { alcohol } & 1 \mathrm{~kg} \text { mol alcohol } & 94.07 \mathrm{~kg} \text { mol air } \\
\hline & 46.07 \mathrm{~kg} \text { alcohol } & 5.93 \mathrm{~kg} \mathrm{~mol} \text { alcohol }
\end{array}=2.07 \mathrm{~kg} \mathrm{~mol} \text { air }
$$

$$
V_{\mathrm{air}}=\begin{array}{l|c|c}
2.07 \mathrm{~kg} \mathrm{~mol} \text { air } & 8.314(\mathrm{kPa})\left(\mathrm{m}^{3}\right) & 293 \mathrm{~K} \\
\hline(\mathrm{~kg} \mathrm{~mol})(\mathrm{K}) & 100 \mathrm{kPa}
\end{array}=50.3 \mathrm{~m}^{3} \text { at } 20^{\circ} \mathrm{C} \text { and } 100 \mathrm{kPa}
$$

* Another way to view this problem is to say that the final volume contains
$V \mathrm{~m}^{3}$ of alcohol at 5.93 kPa and $20^{\circ} \mathrm{C}$
$V \mathrm{~m}^{3}$ of air at 94.07 kPa and $20^{\circ} \mathrm{C}$
$V \mathrm{~m}^{3}$ of air plus alcohol at 100 kPa and $20^{\circ} \mathrm{C}$

Thus, the volume could be calculated from the information about the alcohol

$$
\begin{aligned}
& V_{\text {atcohol }}=\left(\begin{array}{c|c}
\left.\frac{6}{46.07}\right) & 8.314 \\
\hline & \\
\hline & 293
\end{array}\right. \\
& =\mathrm{V}_{\mathrm{air}} \text { at } 94.07 \mathrm{kPa} \text { and } 20^{\circ} \mathrm{C} \\
& V_{\text {air }}=\begin{array}{l|l}
53.5 \mathrm{~m}^{3} & 94.07 \\
\hline & 100
\end{array}=50.3 \mathrm{~m}^{3} \text { at } 100 \mathrm{kPa} \text { and } 20^{\circ} \mathrm{C}
\end{aligned}
$$

Vapor-Liquid Equilibria for Multicomponent Systems

In two-phase vapor-liquid mixture at equilibrium, a component in one phase is in equilibrium with the same component in the other phase. The equilibrium relationship depends on the temperature, pressure, and composition of the mixture. Figure 13.7 illustrates two cases, one at constant pressure and the other at constant temperature.

Figure 13.17 Vapor-liquid equilibrium for a binary mixture. The dashed lines show the equilibrium compositions.

Henry's law. Used primarily for a component whose mole fraction approaches zero, such as a dilute gas dissolved in as liquid:

$$
\begin{equation*}
\boldsymbol{p}_{i}=\boldsymbol{H}_{i} \boldsymbol{x}_{\boldsymbol{i}} \tag{12}
\end{equation*}
$$

Where $\boldsymbol{p}_{\boldsymbol{i}}$ is the pressure in the gas phase of the dilute component at equilibrium at some temperature, and $\boldsymbol{H}_{\boldsymbol{i}}$ is the Henry's law constant. Note that in the limit where $\boldsymbol{x}_{\boldsymbol{i}} \equiv 0, \boldsymbol{p}_{\boldsymbol{i}} \equiv 0$. Values of \boldsymbol{H} can be found in several handbooks.

Note that

$$
y_{\mathrm{i}}=\frac{p_{\mathrm{i}}}{p_{\mathrm{tot}}}=\frac{H_{\mathrm{i}} x_{\mathrm{i}}}{p_{\mathrm{tot}}}
$$

And since $\boldsymbol{H i}$, is roughly independent of $\boldsymbol{p}_{\boldsymbol{t o t}}$, the higher the total pressure, the larger $\boldsymbol{x}_{\boldsymbol{i}}$.

Raoult's law. Used primarily for a component whose mole fraction approaches unity or for solutions of components quite similar in chemical nature, such as straight chain hydrocarbons. Let the subscript \boldsymbol{i} denote the component, $\boldsymbol{p}_{\boldsymbol{i}}$ be the partial pressure of component \boldsymbol{i} in the gas phase, $\boldsymbol{y}_{\mathrm{i}}$ be the gas-phase mole fraction, and $\boldsymbol{x}_{\boldsymbol{i}}$ be the liquid-phase mole fraction. Then:
Note that in the limit where $\boldsymbol{x}_{\boldsymbol{i}} \equiv 1, \boldsymbol{p}_{\boldsymbol{i}} \equiv \boldsymbol{p}_{\boldsymbol{i}}{ }^{*}$.

$$
\begin{equation*}
p_{\mathrm{i}}=p_{\mathrm{i}}^{*} x_{\mathrm{i}} \tag{13}
\end{equation*}
$$

Note that in the limit where $\boldsymbol{x}_{\boldsymbol{i}} \equiv 1, \boldsymbol{p}_{\boldsymbol{i}} \equiv \boldsymbol{p}_{\boldsymbol{i}}{ }^{*}$.
Equilibrium constant $\boldsymbol{K}_{\underline{i}}$ is defined using Eq. (13.13) as follows by assuming that Dalton's law applies to the gas phase $\left(\boldsymbol{p}_{\boldsymbol{i}}=\boldsymbol{p}_{\boldsymbol{t}} \boldsymbol{y}_{\boldsymbol{i}}\right)$:

$$
\begin{equation*}
K_{\mathrm{i}}=\frac{y_{\mathrm{i}}}{x_{\mathrm{i}}}=\frac{p_{\mathrm{i}}^{*}}{p_{\mathrm{tot}}} \tag{14}
\end{equation*}
$$

Equation (14) gives reasonable estimates of $\boldsymbol{K}_{\boldsymbol{i}}$ values at low pressures for components well below their critical temperatures, but yields values too large for components above their critical temperatures, at high pressures, and/or for polar compounds.

Bubble Point Temperature

Bubble point: The temperature at which a liquid just starts to vaporize (See Figure 13.4).

* To calculate the bubble point temperature (given the total pressure and liquid composition), you can write Eq. (13.14) as $\boldsymbol{y}_{\boldsymbol{i}}=\boldsymbol{K}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$ and you know that $\boldsymbol{\sum} \boldsymbol{y}_{\boldsymbol{i}}=\boldsymbol{1}$ in the vapor phase.

$$
\begin{equation*}
1=\sum_{i=1}^{n} K_{i} x_{i} \tag{15}
\end{equation*}
$$

In which the K s are functions of solely the temperature and \boldsymbol{n} is the number of components. For an ideal solution:

$$
\begin{equation*}
I_{t h t}=\sum_{i=1}^{n} r_{i}^{+} x_{i} \tag{16}
\end{equation*}
$$

And you might use Anionie's equation for $\boldsymbol{p}_{\boldsymbol{i}}{ }^{*}$. Once the bubble point temperature is determined, the vapor composition can be calculated from

$$
\begin{equation*}
y_{i}=\frac{r_{i}^{*} \cdot x_{i}}{r_{1,1}} \tag{17}
\end{equation*}
$$

Dew Point Temperature

Dew Point: The temperature, at which the vapor just begins to condense at specified pressure, namely temperature values along the vapor pressure curve (See Figure 13.4).

* To calculate the dew point temperature (given the total pressure and vapor composition), you can write Eq. (13.14) as $\boldsymbol{x}_{i}=\boldsymbol{y}_{i} / \boldsymbol{K}_{i}$ and you know $\boldsymbol{\sum} \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{1}$ in the liquid phase. Consequently, you want to solve the equation

$$
\begin{equation*}
1=\sum_{i=1}^{\prime \prime} \frac{y_{i}}{K_{i}} \tag{18}
\end{equation*}
$$

In which the K 's are function of temperature as explained for the bubble point temperature calculation. For an ideal solution,

$$
\begin{equation*}
\mathrm{I}=p_{\text {tot }} \sum_{i=1}^{n} \frac{y_{i}}{p_{i}^{*}} \tag{19}
\end{equation*}
$$

Example 13

A gas containing nitrogen, benzene, and toluene is in equilibrium with 40 mole $\%$ benzene and 60 mole $\%$ toluene liquid mixtures at $100^{\circ} \mathrm{C}$ and 10 atm . Estimate the gas phase composition (mole fractions) using Raoult's law.

Antoine equation constants	A	B	C	Pressure (mm Hg) Temperature (K)
Benzene	15.9008	2788.51	-52.36	
Toluene	16.0137	3096.52	-53.67	

Solution

$$
\ln \mathrm{p}^{*}=\mathrm{A}-\frac{\mathrm{B}}{\mathrm{C}+\mathrm{T}} \Rightarrow \mathrm{p}_{\mathrm{B}}^{*}=\operatorname{Exp}\left[15.9008-\frac{2788.51}{-52.36+373}\right]=1344.9 \mathrm{~mm} \mathrm{Hg}
$$

$$
\mathrm{p}_{\mathrm{T}}^{*}=\operatorname{Exp}\left[16.0137-\frac{3096.52}{-53.67+373}\right]=553.8 \mathrm{~mm} \mathrm{Hg}
$$

Raoult's law $p_{i}=p_{i}{ }^{*} x_{i}$, and $p_{i}=y_{i} p_{T}$

$$
\begin{aligned}
\mathrm{y}_{\mathrm{B}} \mathrm{p}_{\mathrm{T}}=\mathrm{x}_{\mathrm{B}} \mathrm{p}_{\mathrm{B}}^{*} \Rightarrow \mathrm{y}_{\mathrm{B}} & =\frac{0.4 \times 1344.9}{(10)(760)}=0.071 \\
\mathrm{y}_{\mathrm{T}} & =\frac{0.6 \times 553.8}{(10)(760)}=0.044, \quad \mathrm{y}_{\mathrm{N}_{2}}=1-0.071-0.044=0.885
\end{aligned}
$$

Example 14

Air and liquid water are contained at equilibrium in a closed chamber at $75^{\circ} \mathrm{C}$ and 760 mm Hg . Calculate the molar composition of the gas phase. $p^{*}{ }_{\text {H2O }}\left(75^{\circ} \mathrm{C}\right)=289 \mathrm{~mm} \mathrm{Hg}$

Solution

Since the gas and liquid are in equilibrium, the air must be saturated with water vapor (if it was not, more water would evaporate), so that Raoult's law may be applied:

$$
\begin{gathered}
y_{\mathrm{H}_{2} \mathrm{O}}=p_{\mathrm{H}_{2} \mathrm{O}}^{*}\left(75^{\circ} \mathrm{C}\right) / P \\
y_{\mathrm{H}_{2} \mathrm{O}}=\frac{289 \mathrm{~mm} \mathrm{Hg}}{760 \mathrm{~mm} \mathrm{Hg}}=0.380 \frac{\mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}}{\mathrm{~mol}} \\
y_{\text {dry air }}=1-y_{\mathrm{H}_{2} \mathrm{O}}=0.620 \frac{\mathrm{~mol} \mathrm{dry} \mathrm{air}}{\mathrm{~mol}}
\end{gathered}
$$

Example 15

Use either Raoult's law or Henry's law to solve the following problems.

1. A gas containing $1.00 \mathrm{~mole} \%$ ethane is in contact with water at $20.0^{\circ} \mathrm{C}$ and 20.0 atm . Estimate the mole fraction of dissolved ethane.
2. An equimolar liquid mixture of benzene (B) and toluene (T) is in equilibrium with its vapor at $30.0^{\circ} \mathrm{C}$. What are the system pressure and the composition of the vapor?
(Henry's law constant for ethane in water at $20^{\circ} \mathrm{C}$ as $2.63 \times 10^{4} \mathrm{~atm} / \mathrm{mole}$ fraction)

Solution

1. Hydrocarbons normally are relatively insoluble in water, so that the solution of ethane is probably extremely dilute. Let us therefore apply Henry's law.

$$
x_{\mathrm{C}_{2} \mathrm{H}_{6}}=\frac{y_{\mathrm{C}_{2} \mathrm{H}_{6}} P}{H_{\mathrm{C}_{2} \mathrm{H}_{6}}}=\frac{(0.0100)(20.0 \mathrm{~atm})}{2.63 \times 10^{4} \mathrm{~atm} / \mathrm{mole} \text { fraction }}=7.60 \times 10^{-6} \frac{\mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}}{\mathrm{~mol}}
$$

2. Since benzene and toluene are structurally similar compounds, we may apply Raoult's law.

$$
\begin{aligned}
& \ln p^{*}=A-\frac{B}{C+T} \\
& =6.906-\frac{1211}{T+220.8} \stackrel{T=30^{\circ} \mathrm{C}}{\Longrightarrow} p_{\mathrm{B}}^{*}=119 \mathrm{~mm} \mathrm{Hg} \\
& =6.9533-\frac{1343.9}{T+219.38} \stackrel{T=30^{\circ} \mathrm{C}}{\Longrightarrow} p_{\mathrm{T}}^{*}=36.7 \mathrm{~mm} \mathrm{Hg} \\
& p_{\mathrm{B}}=x_{\mathrm{B}} p_{\mathrm{B}}^{*}=(0.500)(119 \mathrm{~mm} \mathrm{Hg})=59.5 \mathrm{~mm} \mathrm{Hg} \\
& p_{\mathrm{T}}=x_{\mathrm{T}} p_{\mathrm{T}}^{*}=(0.500)(36.7 \mathrm{~mm} \mathrm{Hg})=18.35 \mathrm{~mm} \mathrm{Hg} \\
& P=p_{\mathrm{B}}+p_{\mathrm{T}}=77.9 \mathrm{~mm} \mathrm{Hg} \\
& y_{\mathrm{B}}=p_{\mathrm{B}} / P=0.764 \text { mole benzene } / \mathrm{mole} \\
& y_{\mathrm{T}}=p_{\mathrm{T}} / P=0.236 \text { mole toluene } / \mathrm{mole}
\end{aligned}
$$

Gibb's phase rule

The rule can be applied only to systems in equilibrium.

$$
\begin{equation*}
F=C-P+2 \tag{20}
\end{equation*}
$$

Where
$\boldsymbol{F}=$ number of degrees of freedom (i.e., the number of independent properties that have to be specified to determine all the intensive properties of each phase of the system of interest).
$\boldsymbol{C}=$ number of components in the system.
$\boldsymbol{P}=$ number of phases that can exist in the system; a phase is a homogeneous quantity of material such as a gas, a pure liquid, a solution, or a homogeneous solid.

Example 16

Calculate the number of degrees of freedom (how many additional intensive variables must be specified to fix the system) from the phase rule for the following materials at equilibrium:
(a) Pure liquid benzene.
(b) A mixture of ice and water only.
(c) A mixture of liquid benzene, benzene vapor, and helium gas.
(d) A mixture of salt and water designed to achieve a specific vapor pressure.

What variables might be specified in each case? Solution

$$
F=C-P+2
$$

(a) $C=1, P=1$, hence $F=1-1+2=2$. The temperature and pressure might be specified in the range in which benzene remains a liquid.
(b) $C=1, P=2$, hence $F=1-2+2=1$. Once either the temperature or the pressure is specified, the other intensive variables are fixed.
(c) $C=2, P=2$, hence $F=2-2+2=2$. A pair from temperature, pressure, or mole fraction can be specified.
(d) $C=2, P=2$, hence $F=2-2+2=2$. Since a particular pressure is to be achieved, you would adjust the salt concentration and the temperature of the solution.

Note in (a) and (b) it would be unlikely that a vapor phase would not exist in practice, increasing \boldsymbol{P} by 1 and reducing \boldsymbol{F} by one.

Problems

1. Calculate the volume in ft^{3} of 10 lb mol of an ideal gas at $68^{\circ} \mathrm{F}$ and 30 psia .
2. A steel cylinder of volume $2 \mathrm{~m}^{3}$ contains methane gas $\left(\mathrm{CH}_{4}\right)$ at $50^{\circ} \mathrm{C}$ and 250 kPa absolute. How many kilograms of methane are in the cylinder?
3. What is the value of the ideal gas constant R to use if the pressure is to be expressed in atm, the temperature in Kelvin, the volume in cubic feet, and the quantity of material in pound moles?
4. Twenty-two kilograms per hour of CH_{4} are flowing in a gas pipeline at $30^{\circ} \mathrm{C}$ and 920 mm Hg . What is the volumetric flow rate of the CH_{4} in m^{3} per hour?
5. What is the density of a gas that has a molecular weight of $0.123 \mathrm{~kg} / \mathrm{kg} \mathrm{mol}$ at 300 K and 1000 kPa ?
6. What is the specific gravity of CH_{4} at $70^{\circ} \mathrm{F}$ and 2 atm compared to air at S.C.?
7. A gas has the following composition at $120^{\circ} \mathrm{F}$ and 13.8 psia .

Component	Mol \%
N_{2}	2
CH_{4}	79
$\mathrm{C}_{2} \mathrm{H}_{6}$	19

(a) What is the partial pressure of each component?
(b) What is the volume fraction of each component?
8. (a) If the $\mathrm{C}_{2} \mathrm{H}_{6}$ were removed from the gas in problem 7 , what would be the subsequent pressure in the vessel?
(b) What would be the subsequent partial pressure of the N_{2} ?
9. What is the ideal critical volume? What is the advantage of using $V_{c i}$?
10. A carbon dioxide fire extinguisher has a volume of 40 L and is to be charged to a pressure of 20 atm at a storage temperature of $20^{\circ} \mathrm{C}$. Determine the mass in kilograms of CO_{2} at 1 atm .
11. Calculate the pressure of $4 \mathrm{~g} \mathrm{~mol} \mathrm{CO}_{2}$ contained in a $6.25 \times 10^{-3} \mathrm{~m}^{3}$ fire extinguisher at $25^{\circ} \mathrm{C}$.
12. You measure that 0.00220 lb mol of a certain gas occupies a volume of $0.95 \mathrm{ft}^{3}$ at 1 atm and $32^{\circ} \mathrm{F}$. If the equation of state for this gas is $p V=n R T(1+b p)$, where b is a constant, find the volume at 2 atm and $71^{\circ} \mathrm{F}$.
13. Calculate the temperature of 2 g mol of a gas using van der Waals' equation with $\mathrm{a}=1.35 * 10^{-6} \mathrm{~m}^{6}(\mathrm{~atm})(\mathrm{g} \mathrm{mol}$ $\left.{ }^{2}\right), \mathrm{b}=0.0322 * 10^{-3}\left(\mathrm{~m}^{3}\right)\left(\mathrm{g} \mathrm{mol}^{-1}\right)$ if the pressure is 100 kPa and the volume is $0.0515 \mathrm{~m}^{3}$.
14. Calculate the pressure of 10 kg mol of ethane in a $4.86 \mathrm{~m}^{3}$ vessel at 300 K using two equations of state: (a) ideal gas and (b) Soave-Redlich-Kwong. Compare with your answer the observed value of 34.0 atm .
 of $1.44 \mathrm{ft}^{3}$. What is the pressure in the vessel? Compute your answer by Kay's method.
16. Use the Antoine equation to calculate the vapor pressure of ethanol at $50^{\circ} \mathrm{C}$, and compare with the experimental value (Experimental $p^{*}=219.9 \mathrm{~mm} \mathrm{Hg}$)
17. What does the term "saturated gas" mean?
18. If a container with a volumetric ratio of air to liquid water of 5 is heated to $60^{\circ} \mathrm{C}$ and equilibrium is reached, will there still be liquid water present? at $125^{\circ} \mathrm{C}$?
19. A mixture of air and benzene contains 10 mole $\%$ benzene at $43^{\circ} \mathrm{C}$ and 105 kPa pressure. At what temperature does the first liquid form? What is the liquid?
20. The dew point of water in atmospheric air is $82^{\circ} \mathrm{F}$. What is the mole fraction of water vapor in the air if the barometric pressure is 750 mm Hg ?
21. Ten pounds of KClO_{3} is completely decomposed and the oxygen evolved collected over water at $80^{\circ} \mathrm{F}$. The barometer reads $29.7 \mathrm{in} . \mathrm{Hg}$. What weight of saturated oxygen is obtained?
22. If a gas is saturated with water vapor, describe the state of the water vapor and the air if it is:
(a) Heated at constant pressure.
(b) Cooled at constant pressure.
(c) Expanded at constant temperature.
(d) Compressed at constant temperature.
23. Calculate (a) the pressure at the dew point for the following mixture at $100^{\circ} \mathrm{F}$ and (b) the liquid composition.

Component	Mole fraction	K values at psia of		
		$\mathbf{1 9 0}$	$\mathbf{2 0 0}$	$\mathbf{2 1 0}$
$\mathrm{C}_{2} \mathrm{H}_{6}$	0.218	3.22	3.07	2.92
$\mathrm{C}_{3} \mathrm{H}_{8}$	0.665	1.005	0.973	0.92
$i-\mathrm{C}_{4} \mathrm{H}_{10}$	0.1073	0.45	0.43	0.41
$n-\mathrm{C}_{4} \mathrm{H}_{10}$	0.0097	0.315	0.305	0.295
Total	1			

24. Is the critical point a single phase? If not, what phases are present? Repeat for the triple point (for water).
25. A vessel contains air: $\mathrm{N}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\mathrm{~g})$, and $\mathrm{Ar}(\mathrm{g})$.
(a) How many phases, components, and degrees of freedom are there according to the phase rule?
(b) Repeat for a vessel one-third filled with liquid ethanol and two-thirds filled with N_{2} plus ethanol vapor.

Answers:

1. $1883 \mathrm{ft}^{3}$
2. 2.98 kg
3. 1.32
4. $28.3 \mathrm{~m}^{3} / \mathrm{hr}$
5. $0.0493 \mathrm{~kg} / \mathrm{m}^{3}$
6. $1.02\left(\mathrm{lb} \mathrm{CH}_{4} / \mathrm{ft}^{3}\right.$ at $70^{\circ} \mathrm{F}$ and 2 atm$) /\left(\mathrm{lb}\right.$ air/ ft^{3} at S.C.)
7. $\mathrm{N}_{2}, 0.28$ psia; $\mathrm{CH}_{4}, 10.9$ psia; $\mathrm{C}_{2} \mathrm{H}_{6}, 2.62$ psia
8. (a) 11.12 psia at $2 \mathrm{ft}^{3}$ and $120^{\circ} \mathrm{F}$; (b) 0.28 psia at $2 \mathrm{ft}^{3}$ and $120^{\circ} \mathrm{F}$
9. $\quad V_{c i}=R T_{d} / P_{c}$. It can be used to calculate $V_{r i}$, which is a parameter on the Nelson and Obert charts.
10. 1.65 kg
11. 14.9 atm
12. $V=0.60 \mathrm{ft}^{3}$
13. 314 K
14. (a) 50.7 atm ; (b) 34.0 atm
15. 262 atm
16. predicted 220.9 mm Hg
17. The partial pressure of the vapor equals the vapor pressure of the gas. Liquid and vapor are in equilibrium.
18. Yes; yes
19. $21^{\circ} \mathrm{C}$; benzene
20. 0.0373
21. 4.00 lb
22. (a) Both gas; (b) some liquid water, residual is gas; (c) both gas; (d) some liquid water, residual is gas.
23. 190 psia; $\mathrm{C}_{2} \mathrm{H}_{6}=0.0677, \mathrm{C}_{3} \mathrm{H}_{8}=0.66, i-\mathrm{C}_{4} \mathrm{H}_{10}=0.2415, n-\mathrm{C}_{4} \mathrm{H}_{10}=0.0308$.
24. No, gas and liquid in equilibrium. The triple point in the $p-T$ projection in actually a line on the $p-V-T$ surface. The pressure and temperature are fixed but the volume is not fixed.
25. (a) $C=3, P=1, F=4$; (b) $C=2, P=2, F=2$
