Problem 5

A mild steel cover plate is to be designed for an inspection hole in the shell of a pressure vessel. The hole is 120 mm in diameter and the pressure inside the vessel is $6 \mathrm{~N} / \mathrm{mm} 2$. Design the cover plate along with the bolts. Assume allowable tensile stress for mild steel as 60 MPa and for bolt material as 40 MPa .

Solution

$D=120 \mathrm{~mm}$ or $r=60 \mathrm{~mm} ; p=6 \mathrm{~N} / \mathrm{mm} 2 ; \sigma_{t}=60 \mathrm{MPa}=60 \mathrm{~N} / \mathrm{mm} 2 ; \sigma_{t b}=40 \mathrm{MPa}=40$ $\mathrm{N} / \mathrm{mm}^{2}$

First for all, let us find the thickness of the pressure vessel. According to Lame's equation, thickness of the pressure vessel,

$$
t=r\left[\sqrt{\frac{\sigma_{t}+p}{\sigma_{t}-p}}-1\right]=60\left[\sqrt{\frac{60+6}{60-6}}-1\right]=6 \mathrm{~mm}
$$

Let us adopt $\quad t=10 \mathrm{~mm}$

Design of bolts

We know that the total upward force acting on the cover plate

$$
P=\frac{\pi}{4}(D)^{2} p=\frac{\pi}{4}(120)^{2} 6=67860 \mathrm{~N}
$$

Let the nominal diameter of the bolt is 24 mm . From Table 1 (coarse series), we find that the corresponding core diameter ($d c$) of the bolt is 20.32 mm .
\therefore Resisting force offered by n number of bolts,
$P=\frac{\pi}{4}\left(d_{c}\right)^{2} \sigma_{t b} \times n=\frac{\pi}{4}(20.32)^{2} 40 \times n=12973 n \mathrm{~N}$
$n=67860 / 12973=5.23$ say 6
Taking the diameter of the bolt hole $\left(d_{1}\right)$ as 25 mm , we have pitch circle diameter of bolts,

$$
D_{p}=D+2 t+3 d_{1}=120+2 \times 10+3 \times 25=215 \mathrm{~mm}
$$

\therefore Circumferential pitch of the bolts

$$
=\frac{\pi \times D_{p}}{n}=\frac{\pi \times 215}{6}=112.6 \mathrm{~mm}
$$

We know that for a leak proof joint, the circumferential pitch of the bolts should lie between $20 \sqrt{d 1}$ to $30 \sqrt{d 1}$, where $d 1$ is the diameter of the bolt hole in mm .
\therefore Minimum circumferential pitch of the bolts
$=20 \sqrt{d 1}=20 \sqrt{25}=100 \mathrm{~mm}$
and maximum circumferential pitch of the bolts
$=30 \sqrt{d 1}=30 \sqrt{25}=150 \mathrm{~mm}$
Since the circumferential pitch of the bolts obtained above is within 100 mm and 150 mm , therefore size of the bolt chosen is satisfactory.
\therefore Size of the bolt $=$ M 24

Design of cover plate

Let $t_{1}=$ Thickness of the cover plate. The semi-cover plate is shown in Figure.
We know that the bending moment at $A-A$,

$$
\begin{aligned}
M & =0.053 P \times D_{p} \\
& =0.053 \times 67860 \times 215 \\
& =773265 \mathrm{~N}-\mathrm{mm}
\end{aligned}
$$

Outside diameter of the cover plate,

$$
D_{o}=D_{p}+3 d_{1}=215+3 \times 25=290 \mathrm{~mm}
$$

Width of the plate,

$$
w=D_{o}-2 d_{1}=290-2 \times 25=240 \mathrm{~mm}
$$

\therefore Section modulus,

$$
Z=\frac{1}{6} w\left(t_{1}\right)^{2}=\frac{1}{6} \times 240\left(t_{1}\right)^{2}=40\left(t_{1}\right)^{2} \mathrm{~mm}^{3}
$$

We know that bending (tensile) stress,

$$
\begin{array}{rlrl}
& & \sigma_{t} & =M / Z \quad \text { or } \quad 60=773265 / 40\left(t_{1}\right)^{2} \\
\therefore \quad\left(t_{1}\right)^{2} & =773265 / 40 \times 60=322 \quad \text { or } t_{1}=18 \mathrm{~mm}
\end{array}
$$

Problem 6

A steam engine of effective diameter 300 mm is subjected to a steam pressure of 1.5 $\mathrm{N} / \mathrm{mm}^{2}$. The cylinder head is connected by 8 bolts having yield point 330 MPa and endurance limit at 240 MPa . The bolts are tightened with an initial preload of 1.5 times the steam load. A soft copper gasket is used to make the joint leak-proof. Assuming a factor of safety 2 , find the size of bolt required. The stiffness factor for copper gasket may be taken as 0.5.

Solution

$D=300 \mathrm{~mm} ; p=1.5 \mathrm{~N} / \mathrm{mm}^{2} ; n=8 ; \sigma_{y}=330 \mathrm{MPa}=330 \mathrm{~N} / \mathrm{mm}^{2} ; \sigma_{e}=240 \mathrm{MPa}=240$ $\mathrm{N} / \mathrm{mm}^{2} ; P_{1}=1.5 P_{2} ; F . S .=2 ; K=0.5$

We know that steam load acting on the cylinder head,

$$
P_{2}=\frac{\pi}{4}(D)^{2} p=\frac{\pi}{4}(300)^{2} 1.5=106040 \mathrm{~N}
$$

$\therefore \quad$ Initial pre-load,

$$
P_{1}=1.5 P_{2}=1.5 \times 106040=159060 \mathrm{~N}
$$

We know that the resultant load (or the maximum load) on the cylinder head,

$$
P_{\max }=P_{1}+K . P_{2}=159060+0.5 \times 106040=212080 \mathrm{~N}
$$

This load is shared by 8 bolts, therefore maximum load on each bolt,

$$
P_{\max }=212080 / 8=26510 \mathrm{~N}
$$

and minimum load on each bolt,

$$
P_{\min }=P_{1} / n=159060 / 8=19882 \mathrm{~N}
$$

We know that mean or average load on the bolt,

$$
P_{m}=\frac{P_{\max }+P_{\min }}{2}=\frac{26510+19882}{2}=23196 \mathrm{~N}
$$

and the variable load on the bolt,

$$
P_{v}=\frac{P_{\max }-P_{\min }}{2}=\frac{26510-19882}{2}=3314 \mathrm{~N}
$$

Let

$$
d_{c}=\text { Core diameter of the bolt in } \mathrm{mm} \text {. }
$$

\therefore Stress area of the bolt,

$$
A_{s}=\frac{\pi}{4}\left(d_{c}\right)^{2}=0.7854\left(d_{c}\right)^{2} \mathrm{~mm}^{2}
$$

We know that mean or average stress on the bolt,

$$
\sigma_{m}=\frac{P_{m}}{A_{s}}=\frac{23196}{0.7854\left(d_{c}\right)^{2}}=\frac{29534}{\left(d_{c}\right)^{2}} \mathrm{~N} / \mathrm{mm}^{2}
$$

and variable stress on the bolt,

$$
\sigma_{v}=\frac{P_{v}}{A_{s}}=\frac{3314}{0.7854\left(d_{c}\right)^{2}}=\frac{4220}{\left(d_{c}\right)^{2}} \mathrm{~N} / \mathrm{mm}^{2}
$$

According to *Soderberg's formula, the variable stress,

$$
\begin{aligned}
\sigma_{v} & =\sigma_{e}\left(\frac{1}{F \cdot S}-\frac{\sigma_{m}}{\sigma_{y}}\right) \\
\frac{4220}{\left(d_{c}\right)^{2}} & =240\left(\frac{1}{2}-\frac{29534}{\left(d_{c}\right)^{2} 330}\right)=120-\frac{21480}{\left(d_{c}\right)^{2}}
\end{aligned}
$$

$$
\text { or } \quad \frac{4220}{\left(d_{c}\right)^{2}}+\frac{21480}{\left(d_{c}\right)^{2}}=120 \quad \text { or } \quad \frac{25700}{\left(d_{c}\right)^{2}}=120
$$

$$
\therefore \quad\left(d_{c}\right)^{2}=25700 / 120=214 \quad \text { or } \quad d_{c}=14.6 \mathrm{~mm}
$$

From Table 1 (coarse series), the standard core diameter is $d c=14.933 \mathrm{~mm}$ and the corresponding size of the bolt is M18

