## $\mathbf{P}=\rho \mathbf{g h} \quad$ ( where $h$ is depth of the surface )

Table (3.1) The moments of inertia and other geometric properties of some important plane surfaces .

| Plane surface | C.G. from the <br> base | Area | Moment of inertia <br> about an axis passing <br> through C.G. and <br> parallel to base $\left(I_{G}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| 1. Rectangle | Moment of <br> inertia about <br> base $\left(I_{0}\right)$ |  |  |

Contd...

72 Fluid Mechanics

| Plane surface | C.G. from the <br> base | Area | Moment of inertia <br> about an axis passing <br> through C.G. and <br> parallel to base $\left(I_{G}\right)$ | Moment of <br> inertia about <br> base $\left(I_{0}\right)$ |
| :--- | :---: | :---: | :---: | :---: |
| 3. Circle | $x=\frac{d}{2}$ | $\frac{\pi d^{2}}{4}$ | $\frac{\pi d^{4}}{64}$ | - |
| 4. |  |  |  |  |

## 3.3 / Inclined Plane surface submerged in liquid :

Consider a plane surface of arbitrary shape immersed in a liquid in such a way that the plane of the surface makes an angle $\Theta$ with the free surface of the liquid as shown in Fig.( 3.2).


Fig.( 3.2) Inclined immersed surface
Let, A total area of inclined surface, $h_{c}$ depth of C.G of inclined area from free surface, $h_{p}$ distance of center of pressure from free surface of liquid, $\Theta$ angle made by the plane of the surface with free surface, $y_{c}$ distance of the C.G of the inclined surface from $O-O, y_{p}$ distance of the center of pressure from the $\mathbf{O}-\mathbf{O}$.

Consider a small strip of area dA at a depth ( $h$ ) from free surface and at a distance $y$ from the axis $\mathbf{O}-\mathbf{O}$ as shown in Fig.( 3.2).

Force $d F$ on the strip $=p \times$ Area of strip $=\rho g h \times d A$
Total Force on the whole area, $F=\int \mathbf{d F}=\int \rho \mathrm{gh} \mathbf{d A}$
But from Fig.(3.2), $\sin \Theta=\frac{h}{y}=\frac{h_{c}}{y_{c}}=\frac{h_{p}}{y_{p}}$
Therefore, $\mathrm{h}=\mathrm{y} \sin \boldsymbol{\theta}$
$F=\int \rho g \times y \sin \theta \times d A=\rho g \sin \theta \int y d A$
But, $\int y d A=A y_{c}$
Therefore, $\mathbf{F}=\rho \mathrm{g} \sin \boldsymbol{\theta} \times \mathbf{A} \times \mathbf{y}_{\mathbf{c}}$

$$
\begin{equation*}
\mathbf{F}=\rho \mathbf{g} \mathbf{A} \mathbf{h}_{\mathbf{c}} \tag{3.6}
\end{equation*}
$$

Force on the strip, $\mathbf{d F}=\rho \mathrm{g}$ h dA

$$
\operatorname{Sin} \theta=\frac{h}{y}, \quad \mathbf{h}=\mathrm{y} \sin \theta
$$

$$
d F=\rho g y \sin \theta d A
$$

Moment of force ( dF ) about axis O - O ,
$d F \times y=\rho g y \sin \theta d A \times y=\rho g \sin \theta y^{2} d A$
Sum of moments of all such forces about O-O,
$M=\int \rho g \sin \theta y^{2} d A=\rho g \sin \theta \int y^{2} d A$

$$
\begin{equation*}
\text { But } \int \mathbf{y}^{2} \mathbf{d A}=\mathbf{I}_{0} \tag{3.7}
\end{equation*}
$$

Therefore,$M=\rho g \sin \theta I_{0}$
Moment of the total force $F$, about $O-O$ is given by: $F \times y_{p}(3.8)$
Equating the two values given by equations (3.7) \& (3.8)
$F \times y_{p}=\rho g \sin \boldsymbol{O} I_{0}$
$y_{\mathrm{p}}=\frac{\rho g \sin \theta I_{o}}{F}$
But, $\sin \Theta=\frac{h_{p}}{y_{p}} \quad, y_{p}=\frac{h_{p}}{\sin \theta}$, and $F=\rho g A h_{c}$
And $I_{0}=I_{G}+A y_{c}^{2}$, Substituting these values in eq.(3.9), we get :

$$
\begin{gather*}
\frac{h_{p}}{\sin \theta}=\frac{\rho g \sin \theta}{\rho g A h_{c}}\left(\mathrm{I}_{\mathrm{G}}+\mathrm{A} y_{c}^{2}\right) \\
\text { But }, \sin \theta=\frac{h_{c}}{y_{c}}, \quad \mathrm{y}_{\mathrm{c}}=\frac{h_{c}}{\sin \theta} \\
\mathbf{h}_{\mathrm{p}}=\frac{\sin ^{2} \theta}{A h_{c}}\left(I_{G}+A \frac{h_{c}^{2}}{\sin ^{2} \theta}\right) \\
\mathbf{h}_{\mathrm{p}}=\frac{I_{G} \sin ^{2} \theta}{A h_{c}}+h_{c} \tag{3.10}
\end{gather*}
$$

If the $\Theta=90^{\mathbf{0}}$, equation (3.10) becomes same as equation (3.5) ( vertical plane submerged).

## 3.4 / Curved Surface Submerged in Liquid :

Consider a curved surface ( $A B$ ), submerged in a static liquid as shown in Fig.(3.3) . Let $d A$ is the area of a small strip at a depth of ( $h$ ) from water surface.


Fig. (3.3)
Then pressure ( p ) $=\boldsymbol{\rho} \mathrm{gh}$
Force ( dF ) $=\mathrm{p} \times$ area $=\rho \mathrm{gh} \times \mathrm{dA} \quad$ (3.11) This force dF acts normal to the surface, hence, total force on the curved surface should be:
$F=\int \rho g h d A$
By resolving the force $d F$ in two components $d F$, and $\mathrm{dF}_{\mathrm{x}}$ and $\mathrm{dF}_{\mathrm{y}}$ in the x and $y$ directions respectively. The total force in the $x$ and $y$ directions, $i . e, F_{x}$ and $F_{y}$ are obtained by integrating $d F_{x}$ and $d F_{y}$, Then total force on the curved surface is :

$$
\mathrm{F}=\sqrt{F_{x}^{2}+F_{y}^{2}}
$$

And inclination of resultant with horizontal is,

$$
\begin{equation*}
\tan \theta=\frac{F_{y}}{F_{x}} \tag{3.14}
\end{equation*}
$$

Resolving the force dF given by equation (3.11) in x and y directions :

$$
\begin{aligned}
& d F_{x}=d F \sin \theta=\rho g h d A \sin \theta \\
& \quad d F_{y}=d F \cos \theta=\rho g h d A \cos \theta
\end{aligned}
$$

Total forces in the $\mathbf{x}$ and y directions are :

$$
\begin{align*}
& F_{x}=\int d F_{x}=\rho g \int h d A \sin \theta  \tag{3.15}\\
& F_{y}=\int d F_{y}=\rho g \int h d A \cos \theta \tag{3.16}
\end{align*}
$$

Fig.(3.3) b, shows the enlarged area dA , from this figure, i.e., $\triangle$ EFG :
$E F=d A, \quad F G=d A \sin \theta, E G=d A \cos \theta$

Thus, in Eq.(3.15), $d A \sin \theta=F G=$ Vertical projection of the area $d A$.
Therefore, $F_{x}$ force on the projected area on the vertical plane .
Thus , in Eq. ( 3.16) , dA $\cos \theta=E G=$ Horizontal projection of the area dA.
Therefore, $\int h d A \cos \theta$ is the total volume contained between the curved surface, extended up to free surface .

Hence, $\rho \mathrm{g} \int \mathrm{h} d \mathrm{~A} \cos \theta$ is the total weight supported by the curved surface, thus , $F_{y}=\rho g \int h d A \cos \theta=$ Weight of liquid supported by the curved surface up to free surface of liquid.

