$P = \rho g h$ (where h is depth of the surface)

Table (3.1) The moments of inertia and other geometric properties

	base	Area	through C.G. and parallel to base (I_G)	base (I_0)
1. Rectangle	$x = \frac{d}{2}$	bd	$\frac{bd^3}{12}$	$\frac{bd^3}{3}$
2. Triangle	$x = \frac{h}{3}$	<u>bh</u> 2	$\frac{bh^3}{36}$	$\frac{bh^3}{12}$

of some important plane surfaces .

72 Fluid Mechanics

Plane surface	C.G. from the base	Area	Moment of inertia about an axis passing through C.G. and parallel to base (I_G)	Moment of inertia about base (I ₀)
3. Circle	$x = \frac{d}{2}$	$\frac{\pi d^2}{4}$	$\frac{\pi d^4}{64}$	_
4. Trapezium	$x = \left(\frac{2a+b}{a+b}\right)\frac{h}{3}$	$\frac{(a+b)}{2} \times h$	$\left(\frac{a^2 + 4ab + b^2}{36(a+b)}\right) \times h^3$	

3.3 / Inclined Plane surface submerged in liquid :

Consider a plane surface of arbitrary shape immersed in a liquid in such a way that the plane of the surface makes an angle Θ with the free surface of the liquid as shown in Fig.(3.2).

Fig.(3.2) Inclined immersed surface

Let , A total area of inclined surface , h_c depth of C.G of inclined area from free surface , h_p distance of center of pressure from free surface of liquid , Θ angle made by the plane of the surface with free surface , $y_c\,$ distance of the C.G of the inclined surface from O-O, $y_p\,$ distance of the center of pressure from the O-O.

Consider a small strip of area dA at a depth (h) from free surface and at a distance y from the axis O - O as shown in Fig.(3.2).

Force dF on the strip = $p \times Area$ of strip = $\rho g h \times dA$

Total Force on the whole area, $F = \int dF = \int \rho g h dA$

But from Fig.(3.2), $\sin\Theta = \frac{h}{y} = \frac{h_c}{y_c} = \frac{h_p}{y_p}$

Therefore , $h = y \sin \Theta$

 $\mathbf{F} = \int \boldsymbol{\rho} \, \mathbf{g} \times \mathbf{y} \, \sin \boldsymbol{\Theta} \times \mathbf{d} \mathbf{A} = \boldsymbol{\rho} \, \mathbf{g} \, \sin \boldsymbol{\Theta} \int \mathbf{y} \, \mathbf{d} \mathbf{A}$

But,
$$\int y \, dA = A y_c$$

Therefore, $F = \rho g \sin \Theta \times A \times y_c$

$$\mathbf{F} = \boldsymbol{\rho} \mathbf{g} \mathbf{A} \mathbf{h}_{\mathbf{c}} \qquad (3.6)$$

Force on the strip , $dF = \rho g h dA$

$$\sin \Theta = \frac{h}{y}, \ h = y \sin \Theta$$

 $dF = \rho g y \sin \Theta dA$

Moment of force (dF) about axis O - O,

$$\begin{split} dF \times y &= \rho \ g \ y \ sin \ \Theta \ dA \times y = \rho \ g \ sin \ \Theta \ y^2 \ dA \\ & \text{Sum of moments of all such forces about } O - O \ , \\ M &= \int \rho \ g \ sin \Theta \ y^2 \ dA = \rho \ g \ sin \Theta \ \int y^2 \ dA \\ & \text{But } \int y^2 \ dA = I_o \\ & \text{Therefore} \ , \ M = \rho \ g \ sin \Theta \ I_o \end{split}$$
(3.7)

Moment of the total force F, about O - O is given by : $F \times y_p(3.8)$ Equating the two values given by equations (3.7) & (3.8)

$$\mathbf{F} \times \mathbf{y}_{p} = \rho \ \mathbf{g} \ \mathbf{sin} \Theta \ \mathbf{I}_{o}$$
$$\mathbf{y}_{p} = \frac{\rho \ \mathbf{g} \ \mathbf{sin} \theta \ \mathbf{I}_{o}}{F} \qquad (3.9)$$

But, $\sin\Theta = \frac{h_p}{y_p}$, $y_p = \frac{h_p}{\sin\theta}$, and $F = \rho g A h_c$

And $I_0 = I_G + A y_c^2$, Substituting these values in eq.(3.9), we get :

$$\frac{h_p}{\sin\theta} = \frac{\rho g \sin\theta}{\rho g A h_c} \left(\mathbf{I}_{\mathrm{G}} + \mathbf{A} y_c^2 \right) \qquad (\times \sin \Theta)$$

But, $\sin\Theta = \frac{h_c}{y_c}$, $y_c = \frac{h_c}{\sin\theta}$

$$\mathbf{h}_{p} = \frac{\sin^{2}\theta}{Ah_{c}} \left(I_{G} + A \frac{h_{c}^{2}}{\sin^{2}\theta} \right)$$
$$\mathbf{h}_{p} = \frac{I_{G}\sin^{2}\theta}{Ah_{c}} + h_{c} \qquad (3.10)$$

If the $\Theta = 90^{0}$, equation (3.10) becomes same as equation (3.5) (vertical plane submerged).

3.4 / Curved Surface Submerged in Liquid :

Consider a curved surface (AB), submerged in a static liquid as shown in Fig.(3.3). Let dA is the area of a small strip at a depth of (h) from water surface.

Fig.(3.3)

Then pressure (p) = ρ g h

Force (dF) = $p \times area = \rho g h \times dA$ (3.11) This force dF acts normal to the surface , hence , total force on the curved surface should be:

 $\mathbf{F} = \int \boldsymbol{\rho} \, \mathbf{g} \, \mathbf{h} \, \mathbf{dA} \quad (3.12)$

By resolving the force dF in two components dF , and dF_x and dF_y in the x and y directions respectively . The total force in the x and y directions , i .e , F_x and F_y are obtained by integrating dF_x and dF_y , Then total force on the curved surface is :

$$\mathbf{F} = \sqrt{F_x^2 + F_y^2} \tag{3.13}$$

And inclination of resultant with horizontal is,

$$\tan \Theta = \frac{F_y}{F_x} \tag{3.14}$$

Resolving the force dF given by equation (3.11) in x and y directions :

$$dF_x = dF \sin \Theta = \rho g h dA \sin \Theta$$

 $dF_y = dF \cos \Theta = \rho g h dA \cos \Theta$

Total forces in the x and y directions are :

$$F_{x} = \int dF_{x} = \rho g \int h dA \sin \Theta$$
(3.15)
$$F_{y} = \int dF_{y} = \rho g \int h dA \cos \Theta$$
(3.16)

Fig.(3.3) b , shows the enlarged area dA , from this figure , i.e. , Δ EFG :

 $\mathbf{EF} = \mathbf{dA}$, $\mathbf{FG} = \mathbf{dA}\sin\Theta$, $\mathbf{EG} = \mathbf{dA}\cos\Theta$

Thus, in Eq.(3.15), dA $\sin \Theta = FG = Vertical projection of the area dA$.

Therefore , $\mathbf{F}_{\mathbf{x}}$ force on the projected area on the vertical plane .

Thus, in Eq.(3.16), dA $\cos\Theta = EG =$ Horizontal projection of the area dA.

Therefore , $\int h \, dA \cos \Theta$ is the total volume contained between the curved surface , extended up to free surface .

Hence, $\rho g \int h dA \cos \Theta$ is the total weight supported by the curved surface, thus, $F_y = \rho g \int h dA \cos \Theta$ = Weight of liquid supported by the curved surface up to free surface of liquid.