

Ministry of Higher Education

and Scientific Research

Al- Mustaqbal University College

Department of Medical Instrumentation Techniques Engineering

تكنولوجيا الكهرباء

Electrical Technology

Lecture 9

Lecture Name: TRANSFORMER

By

Dr. Jaber Ghaib Talib

Example and Solution أمثلة وحلول

Exp:

A three-phase transformer bank is to handle (600 KVA) and have a (34.5/13.8 KV) voltage ratio. Find the rating of each individual transformer in bank (high voltage, low voltage, turns ratio, and apparent power) if the transformer bank is connected to (a) Y - Y (b) Δ - Δ (c) Δ -Y (d) Y - Δ ?

Solution:

For Y - Y connectionPrimary voltage = $\frac{34.5}{\sqrt{3}}$ = 19.9 KV,Secondary voltage = $\frac{13.8}{\sqrt{3}}$ = 7.97 KVTurns ratio = $\frac{19.9}{7.97}$ = 2.5For Δ - Δ connectionPrimary voltage = 34.5 KV, Secondary voltage = 13.8 KV

Turns ratio = $\frac{34.5}{13.8} = 2.5$

Page 2 of 8

For Δ - Y connection

Primary voltage = 34.5 KV , **Secondary voltage** = $\frac{13.8}{\sqrt{3}}$ = 7.97 KV

Turns ratio = $\frac{34.5}{7.97}$ = 4.33

For Y - Δ connection

Primary voltage = $\frac{34.5}{\sqrt{3}}$ = 19.9 KV , **Secondary voltage** = 13.8 KV

Turns ratio = $\frac{19.9}{13.8} = 1.44$

Apparent power =
$$\frac{1}{3}(600) = 200 \text{ KVA}$$

Exp 2:

A three-phase transformer has 600 primary turns and 150 secondary turns. If the supply voltage is 1.5 kV determine the secondary line voltage on no-load when the windings are connected:

(a) delta-star, (b) star-delta.

(a) For a delta connection, $V_L = V_P$

hence, primary phase voltage, $V_{P_1} = 1.5 \text{ kV} = 1500 \text{ V}$

Secondary phase voltage,
$$V_{P_2} = V_{P_1} \left(\frac{N_2}{N_1} \right) = (1500) \left(\frac{150}{600} \right) = 375 \text{ V}$$

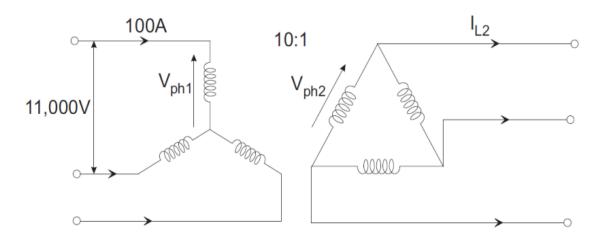
For a star connection, $V_L = \sqrt{3} V_P$

hence, secondary line voltage = $\sqrt{3}(375) = 649.5$ V

(b) For a star connection, $V_L = \sqrt{3} V_P$ or $V_P = \frac{V_L}{\sqrt{3}}$

Primary phase voltage,
$$V_{P_1} = \frac{V_{L_1}}{\sqrt{3}} = \frac{1500}{\sqrt{3}} = 866.0 \text{ V}$$

For a delta connection, $V_L = V_P$


$$\frac{N_1}{N_2} = \frac{V_1}{V_2}$$
 from which, secondary phase voltage,
$$V_{P_2} = V_{P_1} \left(\frac{N_2}{N_1}\right) = (866.0) \left(\frac{150}{600}\right)$$

= 216.5 V = secondary line voltage

Page 4 of 8

Exp 3: A 3-phase transformer bank consisting of three single phase transformers is used to step-down the voltage of a 3-phase, 11000V transmission line. If the primary line current is 100A, calculate the secondary line voltage for Y/ Δ connection. The turns ratio is 10. Neglect losses. Solution

Phase voltage on the primary side, $V_{ph1} = \frac{11,000}{\sqrt{3}} = 6.35kV$ Secondary side phase voltage, $V_{ph2} = \frac{6.35}{10} = 0.635kV$ Secondary side line voltage = Secondary side phase voltage

Secondary side line voltage, $V_{LL2} = 0.635 \text{ kV}$

Three single phase transformers of rating 50 kVA, 2000V/1000V are connected in Δ / Δ . Find the current in Page 5 of 8

Exp 4:

the primary windings of the transformer, when supplying a balanced three phase load of 40kW at 1000V and 0.8 power factor lagging?

Solution

$$\sqrt{3}V_L I_L \cos(\phi) = 40,000W$$

$$\sqrt{3} \times 1000 \times I_L \times 0.8 = 40,000W$$

$$I_L = \frac{40,000}{\sqrt{3} \times 1000 \times 0.8} = 28.86A$$
The current in the windings of the transformer secondary, $I_{ph2} = \frac{28.86}{\sqrt{3}} = 16.66A$
Current in the primary windings of the transformer, $I_{ph1} = 16.66 \times \frac{1000}{2000} = 8.33A$

Exp 5:

three phase step down transformer is connected to 3300V supply. The turns ratio per phase is 12 and it draws a current of 5 A from the mains. Calculate the

secondary line voltage and line current if transformer is deltastar connected. Solution

Delta-Star connection

Secondary phase voltage = $\frac{3300}{12} = 275V$

 \therefore Secondary line voltage = Secondary phase voltage $\times \sqrt{3}$

= 476.31 V

: Secondary line current = Secondary phase current (since, seconday is star)

Secondary phase current = (Primary phase current x 12)

Primary phase current =
$$\frac{\text{Primary line current}}{\sqrt{3}}$$

 \therefore Secondary line current = $\frac{5}{\sqrt{3}} \times 12$
= **34.64 A**

Exp 6: three phase step down transformer is connected to 3300V supply. The turns ratio per phase is 12 and it draws a current of 5 A from the mains. Calculate the secondary line voltage and line current if transformer is stardelta connected. Solution

Page 7 of 8

