$$
\begin{aligned}
& 0.1 F+0.3 D=0.2 P \\
& 0.9 F+0.7 D=0.8 P \\
& F+D=P
\end{aligned}
$$

3. How many values of the concentrations and flow rates in the process shown in Figure SAT7.2P3 are unknown? List them. The streams contain two components, 1 and 2.

Figure SAT7.2P3
4. How many material balances are needed to solve problem 3? Is the number the same as the number of unknown variables? Explain.

Answers:

1. (a) Two; (b) two of these three: acetic acid, water, total; (c) two; (d) feed of the 10% solution (say F) and mass fraction ω of the acetic acid in P; (e) 14% acetic acid and 86% water
2. Not for a unique solution because only two of the equations are independent.
3. $\mathrm{F}, \mathrm{D}, \mathrm{P}, \omega_{\mathrm{D} 2}, \omega_{\mathrm{P} 1}$
4. Three unknowns exist. Because only two independent material balances can be written for the problem, one value of F, D, or P must be specified to obtain a solution. Note that specifying values of $\omega_{\mathrm{D} 2}$ or $\omega_{\mathrm{P} 1}$ will not help.

2.3 Solving Material Balance Problems for Single Units without Reaction

The use of material balances in a process allows you (a) to calculate the values of the total flows and flows of species in the streams that enter and leave the plant equipment, and (b) to calculate the change of conditions inside the equipment.

Example 9

Determine the mass fraction of Streptomycin in the exit organic solvent assuming that no water exits with the solvent and no solvent exits with the aqueous solution. Assume that the density of the aqueous solution is $1 \mathrm{~g} / \mathrm{cm}^{3}$ and the density of the organic solvent is $0.6 \mathrm{~g} / \mathrm{cm}^{3}$. Figure E8. 1 shows the overall process.

Solution

This is an open (flow), steady-state process without reaction. Assume because of the low concentration of Strep. in the aqueous and organic fluids that the flow rates of the entering fluids equal the flow rates of the exit fluids.

Figure E8.1

Basis: 1 min

Basis: Feed $=200 \mathrm{~L}$ (flow of aqueous entering aqueous solution)

- Flow of exiting aqueous solution (same as existing flow)
- Flow of exiting organic solution (same as existing flow)

The material balances are in = out in grams. Let \mathbf{x} be the \mathbf{g} of Strep per \mathbf{L} of solvent \mathbf{S}
Strep. balance:

$$
\underline{200 \mathrm{~L} \text { of } \mathrm{A}}\left|\frac{10 \mathrm{~g} \mathrm{Strep}}{1 \mathrm{~L} \text { of } \mathrm{A}}+\frac{10 \mathrm{~L} \text { of } \mathrm{S}}{}\right| \frac{0 \mathrm{~g} \text { Strep }}{1 \mathrm{~L} \text { of } S}=\frac{200 \mathrm{~L} \text { of } \mathrm{A}}{}\left|\frac{0.2 \mathrm{~g} \mathrm{Strep}}{1 \mathrm{~L} \text { of } \mathrm{A}}+\frac{10 \mathrm{~L} \text { of } \mathrm{S}}{}\right| \frac{x \mathrm{~g} \text { Strep }}{1 \mathrm{~L} \text { of } \mathrm{S}}
$$

$\mathrm{x}=196 \mathrm{~g}$ Strep/L of solvent
To get the g Strep/g solvent, use the density of the solvent:

$$
\frac{196 \mathrm{~g} \mathrm{Strep}}{1 \mathrm{~L} \text { of } \mathrm{S}}\left|\frac{1 \mathrm{~L} \text { of } \mathrm{S}}{1000 \mathrm{~cm}^{3} \text { of } \mathrm{S}}\right| \frac{1 \mathrm{~cm}^{3} \text { of } \mathrm{S}}{0.6 \mathrm{~g} \text { of } \mathrm{S}}=0.3267 \mathrm{~g} \mathrm{Strep} / \mathrm{g} \text { of } \mathrm{S} \longrightarrow 1 \mathrm{~g} \text { of solvent }
$$

The mass fraction Strep $=\frac{0.3267}{1+0.3267}=0.246$

Example 10

Membranes represent a relatively new technology for the separation of gases. One use that has attracted attention is the separation of nitrogen and oxygen from air. Figure E8.2a illustrates a nanoporous membrane that is made by coating a very thin layer of polymer on a porous graphite supporting layer. What is the composition of the waste stream if the waste stream amounts to 80% of the input stream?

Figure E8.2a

Solution

This is an open, steady-state process without chemical reaction.

Basis: $100 \mathrm{~g} \mathrm{~mol}=\mathrm{F}$
Basis: $\mathrm{F}=100$
Specifications: $\quad n_{\mathrm{O}_{2}}^{F}=0.21(100)=21$
$n_{\mathrm{N}_{2}}^{F}=0.79(100)=79$
$y_{\mathrm{O}_{2}}^{P}=n_{\mathrm{O}_{2}}^{P} / P=0.25 \quad n_{\mathrm{O}_{2}}^{P}=0.25 P$
$y_{\mathrm{N}_{2}}^{P}=n_{\mathrm{N}_{2}}^{P} / P=0.75 \quad n_{\mathrm{N}_{2}}^{P}=0.75 P$
$W=0.80(100)=80$
Material balances: O_{2} and N_{2}
Implicit equations: $\Sigma n_{i}^{W}=W$ or $\Sigma y_{i}^{W}=1$

$$
\begin{array}{lllll}
& \frac{\text { In }}{} \begin{array}{llll}
\text { Out } & & \text { In } & \\
0_{2}: & 0.21(100) & =0.25 P+y_{\mathrm{O}_{2}}^{W}(80) & \text { or } \\
0.21(100) & & =0.25 P+n_{\mathrm{O}_{2}}^{W} \\
\mathrm{~N}_{2}: & 0.79(100) & =0.75 P+y_{\mathrm{N}_{2}}^{W}(80) & \text { or } \\
& 0.79(100) & & =0.75 P+n_{\mathrm{N}_{2}}^{W} \\
& & & \\
& & & \\
& y_{\mathrm{O}_{2}}^{W}+y_{\mathrm{N}_{2}}^{W} & \text { or } & 80
\end{array} & =n_{\mathrm{O}_{2}}^{W}+n_{\mathrm{N}_{2}}^{W}
\end{array}
$$

The solution of these equations is
$n_{\mathrm{O}_{2}}^{\mathrm{W}}=16$ and $n_{\mathrm{N}_{2}}^{W}=64$, or $y_{\mathrm{O}_{2}}^{W}=0.20$ and $y_{\mathrm{N}_{2}}^{W}=0.80$, and $P=20 \mathrm{~g} \mathrm{~mol}$.
Check: total balance $100=20+80$ OK

* Another method for solution

The overall balance is easy to solve because
$\mathrm{F}=\mathrm{P}+\mathrm{W} \quad$ or $100=\mathrm{P}+80$
Gives $\mathrm{P}=20$ straight off. Then, the oxygen balance would be

$$
0.21(100)=0.25(20)+n_{O_{2}}^{W}
$$

$n_{\mathrm{O}_{2}}^{W}=16 \mathrm{~g} \mathrm{~mol}$, and $n_{\mathrm{O}_{2}}^{W}=80-16=64 \mathrm{~g} \mathrm{~mol}$.

Note (Example 10)

$n_{\mathrm{O}_{2}}^{F}+n_{\mathrm{N}_{2}}^{F}=F \quad$ is a redundant equation because it repeats some of the specifications.

Also, $\quad n_{\mathrm{O}_{2}}^{P}+n_{\mathrm{N}_{2}}^{P}=P$ is redundant. Divide the equation by P to get $y_{\mathrm{O}_{2}}^{P}+y_{\mathrm{N}_{2}}^{P}=1$, a relation that is equivalent to the sum of two of the specifications.

Example 11

A novice manufacturer of ethyl alcohol (denoted as EtOH) for gasohol is having a bit of difficulty with a distillation column. The process is shown in Figure E8.3. It appears that too much alcohol is lost in the bottoms (waste). Calculate the composition of the bottoms and the mass of the alcohol lost in the bottoms based on the data shown in Figure E8.3 that was collected during 1 hour of operation.

Solution

The process is an open system, and we assume it is in the steady state. No reaction occurs.

Figure E8. 3
Basis: $\mathbf{1}$ hour so that $\mathbf{F}=\mathbf{1 0 0 0} \mathbf{~ k g}$ of feed
We are given that P is $(1 / 10)$ of F, so that $P=0.1(1000)=100 \mathrm{~kg}$

Basis: $\mathrm{F}=1000 \mathrm{~kg}$
Specifications:

$$
\begin{aligned}
& m_{\mathrm{EtOH}}^{F}=1000(0.10)=100 \\
& m_{\mathrm{H}_{2} \mathrm{O}}^{F}=1000(0.90)=900 \\
& m_{\mathrm{EtOH}}^{P}=0.60 P \\
& m_{\mathrm{H}_{2} \mathrm{O}}^{P}=0.40 P
\end{aligned}
$$

$\mathrm{P}=(0.1)(\mathrm{F})=100 \mathrm{~kg}$
Material balances: EtOH and $\mathrm{H}_{2} \mathrm{O}$

Implicit equations: $\quad \Sigma m_{i}^{B}=B$ or $\Sigma \omega_{i}^{B}=1$

The total mass balance:

$$
\begin{gathered}
F=P+B \\
B=1000-100=900 \mathrm{~kg}
\end{gathered}
$$

The solution for the composition of the bottoms can then be computed directly from the material balances:

| | $k g$ feed in | $k g$ distillate out | kg bottoms out Mass fraction |
| :--- | :--- | :--- | :--- | :--- |
| EtOH balance: $0.10(1000)-0.60(100)$ | $=40$ | 0.044 | |
| $\mathrm{H}_{2} \mathrm{O}$ balance: $0.90(1000)-0.40(100)$ | $\underline{860}$ | $\underline{0.956}$ | |
| | | 900 | 1.000 |

As a check let's use the redundant equation

$$
\begin{gathered}
m_{\mathrm{EtOH}}^{B}+m_{\mathrm{H}_{2} \mathrm{O}}^{B}=B \quad \text { or } \quad \omega_{\mathrm{EtOH}}^{B}+\omega_{\mathrm{H}_{2} \mathrm{O}}^{B}=1 \\
40+860=900=\mathrm{B}
\end{gathered}
$$

Example 12

You are asked to prepare a batch of 18.63% battery acid as follows. A tank of old weak battery acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ solution contains $12.43 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (the remainder is pure water). If 200 kg of $77.7 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ is added to the tank, and the final solution is to be $18.63 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, how many kilograms of battery acid have been made? See Figure E8.4.

Figure E8. 4

Solution

1. An unsteady-state process (the tank initially contains sulfuric acid solution).

Accumulation $=\mathbf{I n}-$ Out

2. Steady-state process (the tank as initially being empty)

$$
\mathbf{I n}=\text { Out } \quad(\text { Because no accumulation occurs in the tank })
$$

1) Solve the problem with the mixing treated as an unsteady-state process.

$$
\text { Basis }=200 \mathrm{~kg} \text { of } \mathrm{A}
$$

Material balances: $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$
The balances will be in kilograms.

Type of Balance	Accumulation in Tank	In	Out	
Final	Initial			
$\mathrm{H}_{2} \mathrm{SO}_{4}$	$P(0.1863)$	-	$F(0.1243)$	$=200(0.777)$
$\mathrm{H}_{2} \mathrm{O}$	$P(0.8137)$	$-F(0.8757)$	$=\cdot 200(0.223)$	-0
Total	P	-	F	$=$
		200	-	0

Note that any pair of the three equations is independent. $\mathrm{P}=2110 \mathrm{~kg}$ acid $\& \mathrm{~F}=1910 \mathrm{~kg}$ acid.
2) The problem could also be solved by considering the mixing to be a steady- state process.

	$\frac{A \text { in }}{}$		F Fin		$\frac{P \text { out }}{}$
$\mathrm{H}_{2} \mathrm{SO}_{4}$	$200(0.777)$	+	$\mathrm{F}(0.1243)$		$\mathrm{P}(0.1863)$
$\mathrm{H}_{2} \mathrm{O}$	$200(0.223)$	+	$\mathrm{F}(0.8757)$		$\mathrm{P}(0.8137)$
Total	A	+	F		P

Note: You can see by inspection that these equations are no different than the first set of mass balances except for the arrangement and labels.

Example 13

In a given batch of fish cake that contains 80% water (the remainder is dry cake), 100 kg of water is removed, and it is found that the fish cake is then 40% water. Calculate the weight of the fish cake originally put into the dryer. Figure E8.5 is a diagram of the process.

*Bone Dry Cake
Figure E8.5

Solution

This is a steady-state process without reaction.

Basis: 100 kg of water evaporated = W

$\left.\begin{array}{lll} & \frac{I n}{} & \frac{O u t}{B+W=B+100} \\ \text { Total balance: } & A & =B+6\end{array}\right\}$ mass balances
$\mathrm{A}=150 \mathrm{~kg}$ initial cake and $\mathrm{B}=(150)(0.20 / 0.60)=50 \mathrm{~kg}$
Check via the water balance: $0.80 \mathrm{~A}=0.40 \mathrm{~B}+100$

$$
\begin{gathered}
0.80(150) \approx 0.40(50)+100 \\
120=120
\end{gathered}
$$

Note

In Example 8.5 the BDC in the wet and dry fish cake is known as a tie component because the BDC goes from a single stream in the process to another single stream without loss, addition, or splitting.

Example 14

A tank holds $10,000 \mathrm{~kg}$ of a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ at $30^{\circ} \mathrm{C}$. You want to crystallize from this solution 3000 kg of $\mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{O}$ without any accompanying water. To what temperature must the solution be cooled? You definitely need solubility data for $\mathrm{Na}_{2} \mathrm{CO}_{3}$ as a function of the temperature:

Temp. $\left({ }^{\circ} \mathrm{C}\right)$$\quad$| Solubility |
| :---: |
| $\left(\mathrm{g} \mathrm{Na}_{2} \mathrm{CO}_{3} / 100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)$ |

Solution

No reaction occurs. Although the problem could be set up as a steady-state problem with flows in and out of the system (the tank), it is equally justified to treat the process as an -unsteady-state process.

Because the initial solution is saturated at $30^{\circ} \mathrm{C}$, you can calculate the composition of the initial solution:

$$
\frac{38.8 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}{38.8 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}+100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.280 \text { mass fraction } \mathrm{Na}_{2} \mathrm{CO}_{3}
$$

Next, you should calculate the composition of the crystals.

Basis: $\mathbf{1 g ~ m o l ~ N a} \mathbf{N O}_{3} .10 \mathrm{H}_{2} \mathrm{O}$

Comp.	$\frac{\text { Mol }}{n}$	$\frac{\text { Molwt. }}{}$		$\frac{\text { Mass }}{}$	$\frac{\text { Mass fr }}{}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	1	106		106	0.371
$\mathrm{H}_{2} \mathrm{O}$	10	18		$\underline{180}$	$\underline{0.629}$
Total			286	1.00	

Basis: $\mathbf{1 0 , 0 0 0} \mathbf{~ k g}$ of saturated solution at $\mathbf{3 0}^{\circ} \mathrm{C}$

An unsteady-state problem, the mass balance reduces to (the flow in $=0$)

Accumulation $=\mathbf{I n}-\mathbf{O u t}$

Basis: $I=10,000 \mathrm{~kg}$
Material balances: $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}$
$\omega_{i}^{l} I=m_{i}^{l}, \omega_{i}^{F} F=m_{i}^{F}$, and $\omega_{i}^{C} C=m_{i}^{C}$
Note that are redundant equations. $\quad \mathrm{C}=$ Crystals
Also redundant are equations such as $\quad \Sigma \omega_{\mathrm{i}}=\overline{1}$ and $\bar{\Sigma} m_{\mathrm{i}}=m_{\text {total }}$.

M.B.:

	Accumulation in Tank				Transport out
	Final		Initial		
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	$m_{\mathrm{Na}_{2} \mathrm{CO}_{3}}^{F}$	-	10,000(0.280)	=	-3000(0.371)
$\mathrm{H}_{2} \mathrm{O}$	$m_{\mathrm{H}_{2} \mathrm{O}}^{F}$	-	$10,000(0.720)$	=	-3000(0.629)
Total	F	-	10,000	=	-3000

The solution for the composition and amount of the final solution is

Component	$k g$
$m_{\mathrm{Na}_{2} \mathrm{CO}_{3}}^{F}$	1687
$m_{\mathrm{H}_{2} \mathrm{O}}^{F}$	$\underline{5313}$
$\quad F$ (total)	7000

Check using the total balance: $\quad 7,000+3,000=10,000$

To find the temperature of the final solution,

$$
\frac{1,687 \mathrm{~kg} \mathrm{Na}_{2} \mathrm{CO}_{3}}{5,313 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}=\frac{31.8 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}{100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}
$$

Thus, the temperature to which the solution must be cooled lies between $20^{\circ} \mathbf{C}$ and $\mathbf{3 0}{ }^{\circ} \mathbf{C}$. By linear interpolation

$$
30^{\circ} \mathrm{C}-\frac{38.8-31.8}{38.8-21.5}\left(10.0^{\circ} \mathrm{C}\right)=26^{\circ} \mathrm{C}
$$

Example 14

This example focuses on the plasma components of the streams: water, uric acid (UR), creatinine (CR), urea (U), P, K, and Na. You can ignore the initial filling of the dialyzer because the treatment lasts for an interval of two or three hours. Given the measurements obtained from one treatment shown in Figure E8.7b, calculate the grams per liter of each component of the plasma in the outlet solution.

Solution

This is an open steady-state system. Basis: $\mathbf{1}$ minute

- The entering solution is assumed to be essentially water.

The water balance in grams, assuming that I mL is equivalent to 1 gram, is:

$$
1100+1700=1200+S_{\text {water }}^{\text {out }} \text { hence: } \quad S_{\text {water }}^{\text {out }}=1600 \mathrm{~mL}
$$

The component balances in grams are:

$$
\begin{aligned}
& \text { (1) g/L } \\
& \text { UR: } 1.1(1.16)+0=1.2(0.060)+1.6 S_{U R}^{\text {out }} \quad S_{U R}^{\text {out }}=0.75 \\
& \text { CR: } 1.1(2.72)+0=1.2(0.120)+1.6 S_{\mathrm{CR}}^{\text {out }} \quad S_{\mathrm{CR}}^{\text {out }}=1.78 \\
& \text { U: } 1.1(18)+0=1.2(1.51)+1.6 S_{\mathrm{U}}^{\text {out }} \quad S_{\mathrm{U}}^{\text {out }}=11.2 \\
& \text { P: } \quad 1.1(0.77)+0=1.2(0.040)+1.6 S_{\mathrm{P}}^{\text {out }} \quad S_{\mathrm{P}}^{\text {out }}=0.50 \\
& \text { K: } \quad 1.1(5.77)+0=1.2(0.120)+16 S_{\mathrm{K}}^{\text {out }} \quad S_{\mathrm{K}}^{\text {out }}=3.8 \\
& \text { Na: } \quad 1.1(13.0)+0=1.2(3.21)+1.6 S_{\mathrm{Na}}^{\text {out }} \quad S_{\mathrm{Na}}^{\text {out }}=6.53
\end{aligned}
$$

Questions

1. Answer the following questions true or false:
a. The most difficult part of solving material balance problems is the collection and formulation of the data specifying the compositions of the streams into and out of the system, and of the material inside the system.
b. All open processes involving two components with three streams involve zero degrees of freedom.
c. An unsteady-state process problem can be analyzed and solved as a steady-state process problem.
d. If a flow rate is given in $\mathrm{kg} / \mathrm{min}$, you should convert it to $\mathrm{kg} \mathrm{mol} / \mathrm{min}$.
2. Under what circumstances do equations or specifications become redundant?

Answers:

1. (a) T ; (b) F ; (c) T ; (d) F
2. When they are not independent.

Problems

1. A cellulose solution contains 5.2% cellulose by weight in water. How many kilograms of 1.2% solution are required to dilute 100 kg of the 5.2% solution to 4.2% ?
2. A cereal product containing 55% water is made at the rate of $500 \mathrm{~kg} / \mathrm{hr}$. You need to dry the product so that it contains only 30% water. How much water has to be evaporated per hour?
3. If 100 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is dissolved in 200 g of $\mathrm{H}_{2} \mathrm{O}$ and the solution is cooled until 100 g of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ crystallizes out; find (a) the composition of the remaining solution (the mother liquor) and (b) the grams of crystals recovered per 100 g of initial solution.
4. Salt in crude oil must be removed before the oil undergoes processing in a refinery. The crude oil is fed to a washing unit where freshwater fed to the unit mixes with the oil and dissolves a portion of the salt contained in the oil. The oil (containing some salt but no water), being less dense than the water, can be removed at the top of the washer. If the "spent" wash water contains 15% salt and the crude oil contains 5% salt, determine the concentration of salt in the "washed" oil product if the ratio of crud oil (with salt) to water used is $4: 1$.

Answers:

1. 33.3 kg
2. $178 \mathrm{~kg} / \mathrm{hr}$
3. (a) $28 \% \mathrm{Na}_{2} \mathrm{SO}_{4}$; (b) 33.3
4. Salt: 0.00617; Oil: 0.99393 .

2.4 The Chemical Reaction Equation and Stoichiometry

Stoichiometry

- The stoichiometric coefficients in the chemical reaction equation

$$
\left.\mathrm{C}_{7} \mathrm{H}_{16}(\ell)+11 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 7 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \mathrm{C}_{7} \mathrm{H}_{16}, 11 \text { for } \mathrm{O}_{2} \text { and so on }\right) .
$$

- Another way to use the chemical reaction equation is to indicate that $\mathbf{1}$ mole of $\mathbf{C O}_{2}$ is formed from each (1/7) mole of $\mathrm{C}_{7} \mathrm{H}_{16}$, and $\mathbf{1}$ mole of $\mathrm{H}_{2} \mathrm{O}$ is formed with each (7/8) mole of CO_{2}. The latter ratios indicate the use of stoichiometric ratios in determining the relative proportions of products and reactants.

For example how many kg of CO_{2} will be produced as the product if 10 kg of $\mathrm{C}_{7} \mathrm{H}_{16}$ react completely with the stoichiometric quantity of O_{2} ? On the basis of 10 kg of $\mathrm{C}_{7} \mathrm{H}_{6}$

$$
10 \mathrm{~kg} \mathrm{C}_{7} \mathrm{H}_{16}\left|\frac{1 \mathrm{~kg} \mathrm{~mol} \mathrm{C}}{7} \mathrm{H}_{16}\right| \frac{7 \mathrm{~kg} \mathrm{~mol} \mathrm{CO}}{2} \text { }\left|\frac{44.0 \mathrm{~kg} \mathrm{CO}_{2}}{100.1 \mathrm{~kg} \mathrm{C}_{7} \mathrm{H}_{16}}\right| \frac{1 \mathrm{~kg} \mathrm{~mol} \mathrm{C}}{7} \text { H } \mathrm{H}_{16} 6.8 \mathrm{~kg} \mathrm{CO}_{2}
$$

Example 15

The primary energy source for cells is the aerobic catabolism (oxidation) of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right.$, a sugar). The overall oxidation of glucose produces CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ by the following reaction

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+a \mathrm{O}_{2} \rightarrow b \mathrm{CO}_{2}+c \mathrm{H}_{2} \mathrm{O}
$$

Determine the values of a, b, and c that balance this chemical reaction equation.

Solution

Basis: The given reaction

By inspection, the carbon balance gives $b=6$, the hydrogen balance gives $c=6$, and an oxygen balance

$$
6+2 a=6 * 2+6
$$

Gives $\mathrm{a}=6$. Therefore, the balanced equation is

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

Example 16

In the combustion of heptane, CO_{2} is produced. Assume that you want to produce 500 kg of dry ice per hour, and that 50% of the CO_{2} can be converted into dry ice, as shown in Figure E9.2. How many kilograms of heptane must be burned per hour? (MW: $\mathrm{CO}_{2}=44$ and $\mathrm{C}_{7} \mathrm{H}_{16}=100.1$)

Figure E9.2

