

P a g e | 1 Study Year: 2023-2024

Al-Mustaqbal University
College of Science

Intelligent Medical System Department

 العلومكلية
ة ـيـبـطــــة الــــمــــظـــن الانــــــــــســق

 ةـــيــــــذكـــال

Lecture: (7)

(Constructor & Destructor)
(Encapsulation and abstraction)

Subject: Object oriented programming II
Class: Second
Lecturer: Dr. Maytham N. Meqdad

P a g e | 2 Study Year: 2023-2024

Al-Mustaqbal University
College of Science

Intelligent Medical System Department

Constructor & Destructor in Python

Constructor & Destructor in Python :

Constructor & Destructor are an important concept of oops in Python .

Constructor: A constructor in Python is a special type of method which is used to initialize the instance

members of the class. The task of constructors is to initialize and assign values to the data members of

the class when an object of the class is created .

Destructor: Destructor in Python is called when an object gets destroyed. In Python, destructors are not

needed, because Python has a garbage collector that handles memory management automatically .

Constructor:

 The __init__ method is similar to constructors in c++ and Java.

 Constructors are used to initialize the object’s state.

 The task of constructors is to initialize(assign values) to the data members of the class

when an object of class is created.

Synatx:

class ClassName:

 def __init__(self , variables...):

 ##body

Types of Constructor:

 default constructor: The default constructor is a simple constructor which doesn’t have

any argument to pass. Its definition has only one argument which is a reference to the

instance being constructed.

 parameterized constructor: constructor which has parameters to pass is known as

parameterized constructor. The parameterized constructor takes its first argument as a

reference to the instance being constructed known as self.

Code #1:

#python Program

#Rishikesh

#constructor

#default Constructor

https://prepinsta.com/?page_id=694374&preview=true

P a g e | 3 Study Year: 2023-2024

Al-Mustaqbal University
College of Science

Intelligent Medical System Department

class A(object):

 def __init__(self):

 self.str1 = ‚PrepInsta‛

 print(self.str1)

 print(‘In constructor’)

ob = A()

Output:

PrepInsta

In constructor

Destructor:

 The __del__ method is similar to destructor in c++ and Java.

 Destructors are used to destroying the object’s state.

Syntax:

class ClassName:

 def __del__(self ,):

 ##body

P a g e | 4 Study Year: 2023-2024

Al-Mustaqbal University
College of Science

Intelligent Medical System Department

- This program that demonstrates constructors and resource management in Python, inspired by a

simple library system:

class Book:

 def __init__(self, title, author):

 self.title = title

 self.author = author

 self.checked_out = False

 def check_out(self):

 if not self.checked_out:

 self.checked_out = True

 return True

 else:

 return False

 def check_in(self):

 if self.checked_out:

 self.checked_out = False

 return True

 else:

 return False

 def __str__(self):

 return f"{self.title} by {self.author} - Checked Out:

{self.checked_out}"

Create two book instances

book1 = Book("The Great Gatsby", "F. Scott Fitzgerald")

book2 = Book("To Kill a Mockingbird", "Harper Lee")

Check out and check in books

book1.check_out()

book2.check_out()

Display book information

print(book1)

print(book2)

In this program:

 We have a Book class with a constructor that initializes book attributes, including title,

author, and whether the book is checked out or not.

 The check_out method allows us to check out a book, and the check_in method allows

us to return it.

 The __str__ method is used to create a string representation of the book, indicating its

title, author, and whether it's checked out.

 We create two book instances, check them out, and then display their information.

P a g e | 5 Study Year: 2023-2024

Al-Mustaqbal University
College of Science

Intelligent Medical System Department

This simple program illustrates how you can use constructors and methods to manage book

objects in a basic library system.

Constructors in Python

Constructors in Python are used to initialize the attributes of an object with default or given

values. They are defined with the __init__() method and are automatically called when an

object is created.

Python
class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def greet(self):

 print(f"Hello, my name is {self.name} and I am {self.age} years

old.")

Create a new Person object

person = Person("Bard", 1)

Call the greet() method

person.greet()

Output:

Hello, my name is Bard and I am 1 years old.

Destructors in Python

Destructors in Python are used to clean up any resources that an object is using before it is

destroyed. They are defined with the __del__() method and are automatically called when an

object is deleted.

class File:

 def __init__(self, filename):

 self.file = open(filename, "w")

 def write(self, data):

 self.file.write(data)

 def close(self):

 self.file.close()

 def __del__(self):

 self.close()

P a g e | 6 Study Year: 2023-2024

Al-Mustaqbal University
College of Science

Intelligent Medical System Department

Create a new File object

file = File("myfile.txt")

Write some data to the file

file.write("This is some data to write to the file.")

Close the file

file.close()

Delete the file object

del file

Even though we explicitly called the close() method on the file object, the __del__()

method will still be called when the object is deleted. This ensures that the file is always closed,

even if we forget to do it explicitly.

Use cases for constructors and destructors

Constructors and destructors are useful for a variety of tasks, such as:

 Initializing object attributes: Constructors can be used to initialize the attributes of an

object with default or given values. This ensures that all objects of the class are properly

initialized, regardless of how they are created.

 Cleaning up resources: Destructors can be used to clean up any resources that an object

is using before it is destroyed. This can help to prevent memory leaks and other

problems.

 Enforcing encapsulation: Constructors and destructors can be used to enforce

encapsulation by hiding the internal implementation of a class from its users.

Overall, constructors and destructors are powerful features of Python that can be used to improve

the quality and maintainability of your code.

P a g e | 7 Study Year: 2023-2024

Al-Mustaqbal University
College of Science

Intelligent Medical System Department

Encapsulation and abstraction are two fundamental principles in object-oriented programming

(OOP). They help in organizing and managing code, making it more understandable and

maintainable. In Python, like in many other OOP languages, you can apply encapsulation and

abstraction as follows:

1. Encapsulation:

Encapsulation is the practice of bundling the data (attributes) and the methods (functions)

that operate on the data into a single unit, known as a class. This helps in controlling

access to the data and ensures that the data is used and modified in a controlled manner.

In Python, encapsulation is implemented by using private and protected members.

o Private Members: In Python, you can mark an attribute or method as private by

prefixing it with an underscore (e.g., _variable or _method). This is a

convention and not enforced by the language, but it indicates to other developers

that the attribute or method is intended for internal use and should not be accessed

directly.

 class MyClass:

 def __init__(self):

 self._my_variable = 10

 def _my_method(self):

 return self._my_variable

 Protected Members: Python doesn't have a strict concept of protected members, but you can

prefix an attribute or method with a double underscore (e.g., __variable). This will name-

mangle the member, making it harder (but not impossible) to access from outside the class.

class MyClass:

 def __init__(self):

 self.__my_variable = 10

 def __my_method(self):

 return self.__my_variable

 Abstraction:

Abstraction is the process of simplifying complex reality by modeling classes based on the

essential attributes and behaviors of an object, while hiding the unnecessary details. In Python,

you can achieve abstraction by defining classes with well-defined interfaces, i.e., a set of public

methods that describe how the class can be used, while keeping the implementation details

hidden.

P a g e | 8 Study Year: 2023-2024

Al-Mustaqbal University
College of Science

Intelligent Medical System Department

class Shape:

 def area(self):

 pass

class Circle(Shape):

 def __init__(self, radius):

 self.radius = radius

 def area(self):

 return 3.14 * self.radius * self.radius

class Rectangle(Shape):

 def __init__(self, width, height):

 self.width = width

 self.height = height

 def area(self):

 return self.width * self.height

- In the example above, the Shape class defines an interface with an area method that

every shape subclass must implement. The subclasses Circle and Rectangle provide

their own implementations, but the details of those implementations are hidden from the

user of the classes.

- In summary, encapsulation and abstraction in Python are achieved through conventions

for controlling access to class members and by defining well-defined interfaces that hide

the implementation details. These principles help make your code more maintainable and

understandable.

- This example program that demonstrates encapsulation and abstraction in Python, using a
simple banking system:

class Account:

 def __init__(self, account_number, account_holder, balance=0):

 self._account_number = account_number # Encapsulated as a protected

attribute

 self._account_holder = account_holder # Encapsulated as a protected

attribute

 self._balance = balance # Encapsulated as a protected attribute

 def deposit(self, amount):

 if amount > 0:

 self._balance += amount

 print(f"Deposited ${amount}. New balance: ${self._balance}")

 else:

 print("Invalid deposit amount.")

 def withdraw(self, amount):

 if 0 < amount <= self._balance:

 self._balance -= amount

 print(f"Withdrew ${amount}. New balance: ${self._balance}")

 else:

P a g e | 9 Study Year: 2023-2024

Al-Mustaqbal University
College of Science

Intelligent Medical System Department

 print("Invalid withdrawal amount or insufficient funds.")

 def get_balance(self):

 return self._balance # Encapsulation allows controlled access

 def account_info(self):

 return f"Account: {self._account_number}, Holder:

{self._account_holder}, Balance: ${self._balance}"

class SavingsAccount(Account):

 def __init__(self, account_number, account_holder, balance=0,

interest_rate=0.01):

 super().__init__(account_number, account_holder, balance)

 self._interest_rate = interest_rate

 def apply_interest(self):

 interest = self._balance * self._interest_rate

 self._balance += interest

 print(f"Interest applied: ${interest}. New balance:

${self._balance}")

Create a savings account

savings_account = SavingsAccount("12345", "John Doe", 1000)

Perform transactions and display account information

print("Account information:")

print(savings_account.account_info())

savings_account.deposit(500)

savings_account.withdraw(200)

savings_account.apply_interest()

print("Updated account information:")

print(savings_account.account_info())

In this program:

 The Account class encapsulates account details such as account_number,

account_holder, and balance. These attributes are marked as protected. The class

provides methods to deposit, withdraw, get the balance, and retrieve account information.

 The SavingsAccount class is a subclass of Account that adds an interest_rate

attribute and a method to apply interest. It inherits the encapsulated attributes and

behaviors from the base class.

 We create a SavingsAccount instance, perform transactions (deposit, withdrawal, and

interest application), and display account information.

This example demonstrates how encapsulation is used to protect attributes, and abstraction is

achieved by providing an abstracted interface for interacting with the bank accounts. The specific

P a g e | 10 Study Year: 2023-2024

Al-Mustaqbal University
College of Science

Intelligent Medical System Department

implementation details are hidden from the user of the class, making it easier to use and

maintain.

- This example program that demonstrates encapsulation and abstraction in Python, using a

simplified employee management system:

class Employee:

 def __init__(self, employee_id, name):

 self._employee_id = employee_id # Encapsulated as a protected

attribute

 self._name = name # Encapsulated as a protected attribute

 self._salary = 0 # Encapsulated as a protected attribute

 def calculate_salary(self):

 pass # Abstract method, to be defined in subclasses

 def get_employee_id(self):

 return self._employee_id

 def get_name(self):

 return self._name

 def get_salary(self):

 return self._salary

 def employee_info(self):

 return f"Employee ID: {self._employee_id}, Name: {self._name},

Salary: ${self._salary}"

class Manager(Employee):

 def calculate_salary(self):

 self._salary = 50000

class Developer(Employee):

 def __init__(self, employee_id, name, programming_language):

 super().__init__(employee_id, name)

 self._programming_language = programming_language

 def calculate_salary(self):

 self._salary = 60000

 def get_programming_language(self):

 return self._programming_language

Create employees and display their information

manager = Manager("1", "Alice")

developer = Developer("2", "Bob", "Python")

print("Employee information:")

print(manager.employee_info())

print(developer.employee_info())

P a g e | 11 Study Year: 2023-2024

Al-Mustaqbal University
College of Science

Intelligent Medical System Department

Calculate and display salaries

manager.calculate_salary()

developer.calculate_salary()

print("\nUpdated employee information:")

print(manager.employee_info())

print(developer.employee_info())

In this program:

 The Employee class encapsulates employee details such as employee_id, name, and

salary. These attributes are marked as protected. The class provides methods to

calculate the salary, get employee information, and retrieve individual attributes.

 The Manager and Developer classes are subclasses of Employee that override the

calculate_salary method to set the salary based on their roles. The Developer class

also has an additional attribute, programming_language.

 We create instances of Manager and Developer, display their information, calculate

salaries, and display the updated information.

This example illustrates how encapsulation is used to protect attributes, and abstraction is

achieved by providing an abstracted interface for interacting with employee objects. The specific

implementation details are hidden from the user of the class, making it easier to use and

maintain.

- This program that demonstrates encapsulation and abstraction in Python by modeling a

school's student and teacher information:

class Person:

 def __init__(self, name, age):

 self._name = name # Encapsulated as a protected attribute

 self._age = age # Encapsulated as a protected attribute

 def get_name(self):

 return self._name

 def get_age(self):

 return self._age

 def introduce(self):

 pass # Abstract method, to be defined in subclasses

class Student(Person):

 def __init__(self, name, age, student_id):

 super().__init__(name, age)

P a g e | 12 Study Year: 2023-2024

Al-Mustaqbal University
College of Science

Intelligent Medical System Department

 self._student_id = student_id # Encapsulated as a protected

attribute

 def introduce(self):

 return f"Hi, I'm {self._name}, a student with ID {self._student_id}."

class Teacher(Person):

 def __init__(self, name, age, employee_id):

 super().__init__(name, age)

 self._employee_id = employee_id # Encapsulated as a protected

attribute

 def introduce(self):

 return f"Hello, I'm {self._name}, a teacher with employee ID

{self._employee_id}."

Create students and teachers and display their information

student1 = Student("Alice", 18, "S12345")

student2 = Student("Bob", 17, "S67890")

teacher1 = Teacher("Ms. Johnson", 35, "T101")

teacher2 = Teacher("Mr. Smith", 42, "T202")

print("Student and teacher information:")

print(student1.introduce())

print(student2.introduce())

print(teacher1.introduce())

print(teacher2.introduce())

In this program:

 The Person class encapsulates personal information such as name and age. These

attributes are marked as protected. The class provides methods to get these attributes and

an abstract introduce method.

 The Student and Teacher classes are subclasses of Person that provide concrete

implementations of the introduce method and have additional attributes (student_id

and employee_id) specific to their roles.

 We create instances of Student and Teacher, display their information by calling the

introduce method, and demonstrate encapsulation by using protected attributes for

name, age, student_id, and employee_id.

This example showcases encapsulation by protecting attributes and abstraction by providing an

abstracted interface for interacting with person objects. It hides implementation details, making it

easier to use and maintain.

-

-

-

-

P a g e | 13 Study Year: 2023-2024

Al-Mustaqbal University
College of Science

Intelligent Medical System Department

- This program that demonstrates encapsulation and abstraction in Python, simulating a

simple online shopping system with products and customers:

class Product:

 def __init__(self, product_id, name, price):

 self._product_id = product_id # Encapsulated as a protected

attribute

 self._name = name # Encapsulated as a protected attribute

 self._price = price # Encapsulated as a protected attribute

 def get_product_id(self):

 return self._product_id

 def get_name(self):

 return self._name

 def get_price(self):

 return self._price

 def product_info(self):

 return f"Product: {self._name} (ID: {self._product_id}), Price:

${self._price}"

class Customer:

 def __init__(self, customer_id, name):

 self._customer_id = customer_id # Encapsulated as a protected

attribute

 self._name = name # Encapsulated as a protected attribute

 self._cart = [] # Encapsulated as a protected attribute

 def add_to_cart(self, product):

 self._cart.append(product)

 return f"{self._name} added {product.get_name()} to the cart."

 def checkout(self):

 total_price = sum(product.get_price() for product in self._cart)

 self._cart = []

 return f"{self._name} checked out. Total price: ${total_price}"

 def customer_info(self):

 return f"Customer: {self._name} (ID: {self._customer_id})"

Create products and customers

product1 = Product(1, "Laptop", 800)

product2 = Product(2, "Headphones", 50)

customer1 = Customer(101, "Alice")

customer2 = Customer(102, "Bob")

Interaction

P a g e | 14 Study Year: 2023-2024

Al-Mustaqbal University
College of Science

Intelligent Medical System Department

print("Online Shopping System:")

print(product1.product_info())

print(product2.product_info())

print(customer1.customer_info())

print(customer2.customer_info())

print(customer1.add_to_cart(product1))

print(customer2.add_to_cart(product2))

print(customer1.checkout())

print(customer2.add_to_cart(product1))

print(customer2.checkout())

In this program:

 The Product class encapsulates information about products, including their product_id,

name, and price. The attributes are marked as protected.

 The Customer class encapsulates information about customers, including their

customer_id, name, and a shopping cart. The attributes are marked as protected.

 Both classes provide methods for adding products to the cart, checking out, and providing

information about the products and customers.

 The program simulates interactions between customers and products, demonstrating

encapsulation by protecting attributes and abstraction by providing an abstracted interface

for interacting with product and customer objects.

This example models a basic online shopping system using encapsulation and abstraction

principles.

-

