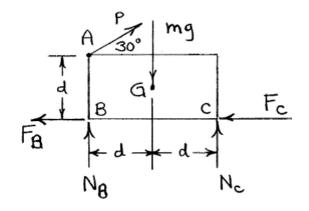


E-mail: LuayHashemAbbud@mustaqbal-college.edu.iq



Problem 6

The magnitude of force P is slowly increased. Does the homogeneous box of mass m slip or tip first? State the value of P which would cause each occurrence. Neglect any effect of the size of the small feet.

Solution

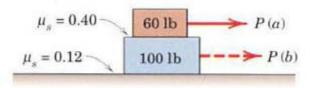
$$\sum F_{x} = 0 : -F_{B} - F_{C} + P \cos 30^{\circ} = 0$$
 (1)

With
$$F_B = M_S N_B$$
 & $F_C = M_S N_C$, combine (1)
& (2) to obtain $P = \frac{\mu_S mg}{\mu_S \sin 30^\circ + \cos 30^\circ}$
With $\mu_S = 0.5$, $P = P_{Ship} = 0.448 mg$
Ties (No Fo $\Rightarrow 0$):

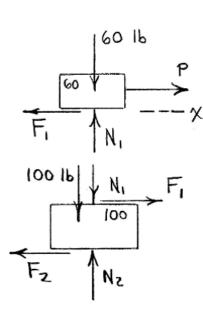
With
$$M_s = 0.5$$
, $P = P_{slip} = 0.448 mg$
Tips $(N_B, F_B \rightarrow 0)$:

$$\sum M_{c} = 0$$
: $(P\cos 30^{\circ})d + (P\sin 30^{\circ})(2d) - mg(d) = 0$
 $\Rightarrow P = \frac{mg}{\cos 30^{\circ} + 2\sin 30^{\circ}} = 0.536 \, mg = P_{tip}$

$$\Rightarrow P = \frac{mg}{\cos 30^{\circ} + 2\sin 30^{\circ}} = 0.536 \,\text{mg} = P_{\text{tip}}$$



E-mail: LuayHashemAbbud@mustaqbal-college.edu.iq



Problem 7

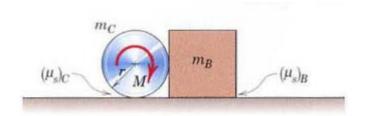
The force P is app lied to (a) the 60-lb block and (b) the 100-lb block. For each case, determine the magnitude of P required to initiate motion.

Solution

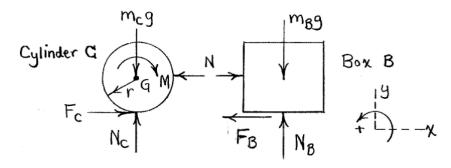
$$\Sigma F_{x} = 0$$
: $P - \mu_{S_{1}} N = 0$
 $P = \mu_{S_{1}} N_{1} = 0.4(60) = 24 \text{ lb}$

Check on 100-16 block:

$$\sum F_{\chi} = 0$$
: $24 - F_{z} = 0$, $F_{z} = 24 \text{ lb}$
But $F_{z_{max}} = \mu_{s_{z}} N_{z} = 0.12(160) = 19.2 \text{ lb}$
So the 60-1b does not slip by itself; rather,
the two blocks move as a unit. In
both cases (a) $4(b)$,
 $P = \mu_{s_{z}} N_{z} = 0.12(160) = 19.2 \text{ lb}$



E-mail: LuayHashemAbbud@mustaqbal-college.edu.iq



Problem 8

A clockwise couple M is applied to the circular cylinder as shown. Determine the value of M required to initiate motion for the conditions $m_B = 3$ kg, $m_c = 6$ kg, $(\mu_s)_B = 0.5$, $(\mu_s)_c = 0.4$, and r = 0.2 m. Friction between the cylinder C and the block B is negligible.

Solution

$$F_{B} = (\mu_{S})_{B} N_{B} .$$

$$B \left\{ \sum F_{X} = 0 : N - F_{B} = 0 \right. (1)$$

$$\sum F_{Y} = 0 : N_{B} - m_{B} g = 0$$

$$\sum F_{Y} = 0 : N_{B} - m_{B} g = 0$$

$$C \left\{ \sum F_{X} = 0 : F_{C} - N = 0 \right. (3)$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : F_{C} - M = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

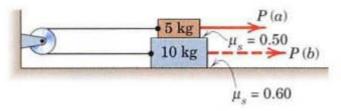
$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0 : N_{C} - m_{C} g = 0$$

$$\sum F_{Y} = 0$$



E-mail: LuayHashemAbbud@mustaqbal-college.edu.iq

Problem 9

The system of two blocks, cable, and fixed pulley is initially at rest. Determine the horizontal force P necessary to cause mot ion when (a) P is applied to the 5-kg block and (b) P is applied to the 10 -kg block. Determine the corresponding tens ion T in the cable for each case.

Solution

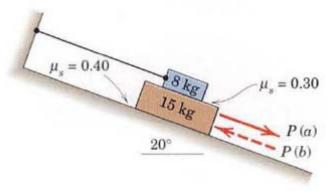
(a)
$$T = 0.50$$

 $M_{S_1}N_1 + N_1$
 $M_{S_2}N_1 + N_1$
 $M_{S_1}N_1 + M_1$
 $M_{S_2}N_2 + 0.60$
 $M_{S_2}N_2 + 0.60$

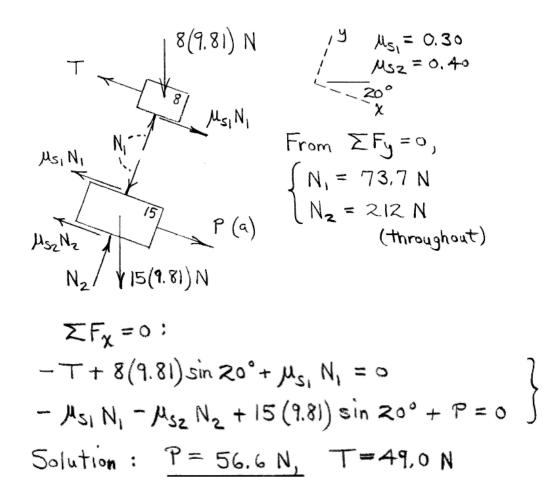
(b) Now P is applied to 10-kg block of we reverse all friction forces above:

$$\sum F_{x} = 0: \begin{cases} -T + 0.50(49.0) = 0 \\ -T - 0.50(49.0) - 0.60(147.2) + P = 0 \end{cases}$$

$$T = 24.5 \text{ N}, \quad P = 137.3 \text{ N}$$



E-mail: LuayHashemAbbud@mustaqbal-college.edu.iq



Problem 10

The two blocks are placed on the incline with the cab le taut. Determine the force P required to initiate motion of the 15-kg block if P is applied down the incline.

Solution

