FRICTION

Consider a solid block of mass m resting on a horizontal surface, as shown in Figures we assume that the contacting surfaces have some roughness.

(b)

Static Friction

The region in Figure d up to the point of slippage or impending motion is called the range of static friction, and in this range the value of the friction force is determined by the equations of equilibrium.

$$
F_{\max }=\mu_{s} N
$$

Where μ_{s}, is the proportionality constant, called the coefficient of static friction.

$$
\mathrm{F}<\mu_{\mathrm{s}} \mathrm{~N}
$$

Kinetic Friction

After slippage occurs, a condition of kinetic friction accompanies the ensuing motion. Kinetic friction force is usually somewhat less than the maximum static friction force. The kinetic friction force F_{k} is also proportional to the normal force. Thus,

$$
F_{k}=\mu_{k} N
$$

Problem 1

Determine the maximum angle θ which the adjustable incline may have with the horizontal before the block of mass m begins to slip. The coefficient of static friction between the block and the inclined surface is μ_{s}.

Solution

Equilibrium in the x - and y -directions requires
$\Sigma \mathrm{F}_{\mathrm{x}}=0 \quad \mathrm{mg} \sin \theta-\mathrm{F}=0 \quad \mathrm{~F}=\mathrm{mg} \sin \theta$
$\Sigma \mathrm{F}_{\mathrm{y}}=0 \quad-\mathrm{mg} \cos \theta+\mathrm{N}=0 \quad \mathrm{~N}=\mathrm{mg} \cos \theta$
$\mathrm{F} / \mathrm{N}=\tan \theta$
$\mathrm{F}=\mathrm{F}_{\text {max }}=\mu_{\mathrm{s}} \mathrm{N}$
$\mu_{\mathrm{s}}=\tan \theta_{\max }$
or

$$
\theta_{\max }=\tan ^{-1} \mu_{\mathrm{s}}
$$

Problem 2

Determine the range of values which the mass m_{0} may have so that the $100-\mathrm{kg}$ block shown in the figure will neither start moving up the plane nor slip down the plane. The coefficient of static friction for the contact surfaces is 0.30

Solution

Case I
$\mathrm{mg}=100(9.81)=981 \mathrm{~N}, \Sigma \mathrm{~F}_{\mathrm{y}}=0$
$\mathrm{F}_{\text {max }}=\mu_{\mathrm{s}} \mathrm{N}$

$$
\begin{array}{r}
\mathrm{N}-981 \cos 20^{\circ}=0 \quad \mathrm{~N}=922 \mathrm{~N} \\
\mathrm{~F}_{\max }=0.30(922)=277 \mathrm{~N}
\end{array}
$$

The block for Case I in the figure
$\Sigma \mathrm{F}_{\mathrm{x}}=0$

$$
m_{0}(9.81)-277-981 \sin 20^{\circ}=0
$$

$$
\mathrm{m}_{\mathrm{o}}=62.4 \mathrm{~kg}
$$

The block for Case II in the figure
$\Sigma \mathrm{F}_{\mathrm{x}}=0$

$$
m_{0}(9.81)+277-981 \sin 20^{\circ}=0
$$

$$
\mathrm{m}_{\mathrm{o}}=6.01 \mathrm{~kg}
$$

Thus, m_{o} may have any value from 6.01 to 62.4 kg , and the block will remain at rest.

Problem 3

Determine the magnitude and direction of the friction force acting on the $100-\mathrm{kg}$ block shown if, first, $\mathrm{P}=500 \mathrm{~N}$ and, second, $\mathrm{P}=100 \mathrm{~N}$. The coefficient of static friction is 0.20 , and the coefficient of kinetic friction is 0.17 . The forces are applied with the block initially at rest.

Solution

$\Sigma \mathrm{F}_{\mathrm{x}}=0 \quad \mathrm{P} \cos 20^{\circ}+\mathrm{F}-981 \sin 20^{\circ}=0$
$\Sigma \mathrm{F}_{\mathrm{y}}=0 \quad \mathrm{~N}-\mathrm{P} \sin 20^{\circ}-981 \cos 20^{\circ}=0$
Case I. $P=500 \mathrm{~N}$
F $=-134.3 \mathrm{~N}$

$$
\mathrm{N}=1093 \mathrm{~N}
$$

$\mathrm{F}_{\text {max }}=\mu_{\mathrm{s}} \mathrm{N}$

$$
F_{\max }=0.20(1093)=219 \mathrm{~N}
$$

Case II. $\mathrm{P}=100 \mathrm{~N}$
$\mathrm{F}=242 \mathrm{~N}$

$$
\mathrm{N}=956 \mathrm{~N}
$$

$\mathrm{F}_{\text {max }}=\mu_{\mathrm{s}} \mathrm{N}$

$$
\mathrm{F}_{\max }=0.20(956)=191.2 \mathrm{~N}
$$

It follows that 242 N of friction cannot be supported. Therefore, equilibrium cannot exist, and we obtain the correct value of the friction force by using the kinetic coefficient of friction accompanying the mot ion down the plane.
$\mathrm{F}_{\mathrm{k}}=\mu_{\mathrm{k}} \mathrm{N} \quad \mathrm{F}_{\mathrm{k}}=0.17(956)=162.5 \mathrm{~N}$

Problem 4

The three flat blocks are positioned on the 30° incline as shown, and a force P parallel to the incline is applied to the middle block. The upper block is prevented from moving by a wire which attaches it to the fixed support. The coefficient of static friction for each of the three pairs of mating surfaces is shown. Determine the maximum value which P may have before any slipping takes place.

Solution

$$
\Sigma \mathrm{F}_{\mathrm{y}}=0 \quad(30 \mathrm{~kg}) \quad \mathrm{N}_{1}-30(9.81) \cos 30^{\circ}=0 \quad \mathrm{~N}_{1}=255 \mathrm{~N}
$$

$$
\begin{array}{rccc}
& (50 \mathrm{~kg}) & \mathrm{N}_{2}-50(9.81) \cos 30^{\circ}-255=0 & N_{2}=680 \mathrm{~N} \\
(40 \mathrm{~kg}) & \mathrm{N}_{3}-40(9.81) \cos 30^{\circ}-680=0 & \mathrm{~N}_{3}=1091 \mathrm{~N} \\
\mathrm{~F}_{\max }=\mu_{\mathrm{s}} \mathrm{~N} & \mathrm{~F}_{1}=0.30(255)=76.5 \mathrm{~N} & \mathrm{~F}_{2}=0.40(680)=272 \mathrm{~N}
\end{array}
$$

The assumed equilibrium of forces at impending motion for the $50-\mathrm{kg}$ block gives
$\Sigma \mathrm{F}_{\mathrm{x}}=0$

$$
P-76.5-272+50(9.81) \sin 30^{\circ}=0
$$

$$
\mathrm{P}=103.1 \mathrm{~N}
$$

We now check on the validity of our initial assumption. For the $40 \cdot \mathrm{~kg}$ block with $\mathrm{F} 2==$ 272 N the friction force F3 would be given by
$\Sigma \mathrm{F}_{\mathrm{x}}=0$
$272+40(9.81) \sin 30-F_{3}=0$
$\mathrm{F}_{3}=468 \mathrm{~N}$

$$
\mathrm{F}_{3}=\mu_{\mathrm{s}} \mathrm{~N}_{3}=0.45(1019)=459 \mathrm{~N}
$$

$\Sigma \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{F}_{2}+40(9.81) \sin 30-459=0$

$$
\mathrm{F}_{2}=263 \mathrm{~N}
$$

Equilibrium of the 50.kg block gives, finally,
$\Sigma \mathrm{F}_{\mathrm{x}}=0$
$P+50(9.81) \sin 30-263-76.5=0$
$\mathrm{P}=93.8 \mathrm{~N}$

Problem 5

The $700-\mathrm{N}$ force is applied to the $100-\mathrm{kg}$ block, which is stationary before the force is applied. Determine the magnitude and direction of the friction force F exerted by the horizontal surface on the block.

Solution

$$
\begin{aligned}
& \Sigma F_{x}=0: 700 \cos 30^{\circ}-F=0, \quad F=606 \mathrm{~N} \\
& \Sigma F_{y}=0: N-981+700 \sin 30^{\circ}=0, \quad N=631 \mathrm{~N} \\
& F_{\text {max }}=\mu_{s} N=0.8(631)=505 \mathrm{~N}<F=606 \mathrm{~N}
\end{aligned}
$$

Assumption invalid, motion occurs.

$$
F=\mu_{k} N=0.6(631)=379 \mathrm{~N}
$$

