

1 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

 وم ــل ــع كــــــــلــيــة الــــ

 ة ـــيـــ ـــذك ـــة ال ـي ـب ـطـ ـــة الـ ـــم ـ ـــظ ـــم الان ـــــــ ـــس ــق

Intelligent Medical Systems Department

Lecture: (4)

Linked List in Python

Subject: Data Structure Lab.
Class: Second
Lecturer: Asst. Prof. Mehdi Ebady Manaa
 Asst. Lec. Sajjad Ibrahim Ismael

2 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

linked list
in this Lecture, we will learn about the implementation of a linked list
in Python. To implement the linked list in Python, we will use classes in
Python. we know that a linked list consists of nodes and nodes have two
elements i.e. data and a reference to another node. Let’s implement the node
first.

What is Linked List in Python
A linked list is a type of linear data structure similar to arrays. It is a collection
of nodes that are linked with each other. A node contains two things first is
data and second is a link that connects it with another node. Below is an
example of a linked list with four nodes and each node contains character data
and a link to another node. Our first node is where head points and we can
access all the elements of the linked list using the head.

Creating a linked list in Python
In this LinkedList class, we will use the Node class to create a linked list. In this
class, we have an __init__ method that initializes the linked list with an empty
head. Next, we have created an insertAtBegin() method to insert a node at the
beginning of the linked list, an insertAtIndex() method to insert a node at the
given index of the linked list, and insertAtEnd() method inserts a node at the
end of the linked list. After that, we have the remove_node() method which
takes the data as an argument to delete that node. In
the remove_node() method we traverse the linked list if a node is present
equal to data then we delete that node from the linked list. Then we have
the sizeOfLL() method to get the current size of the linked list and the last

3 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

method of the LinkedList class is printLL() which traverses the linked list and
prints the data of each node.

Creating a Node Class

We have created a Node class in which we have defined a __init__ function to
initialize the node with the data passed as an argument and a reference with
None because if we have only one node then there is nothing in its reference.

class Node:
 def __init__(self, data):
 self.data = data
 self.next = None

Insertion in Linked List

Insertion at Beginning in Linked List
This method inserts the node at the beginning of the linked list. In this method,
we create a new_node with the given data and check if the head is an empty
node or not if the head is empty then we make
the new_node as head and return else we insert the head at the
next new_node and make the head equal to new_node.

def insertAtBegin(self, data):
 new_node = Node(data)
 if self.head is None:
 self.head = new_node
 return
 else:
 new_node.next = self.head
 self.head = new_node

4 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

Insert a Node at a Specific Position in a Linked List
This method inserts the node at the given index in the linked list. In this
method, we create a new_node with given data , a current_node that equals to
the head, and a counter ‘position’ initializes with 0. Now, if the index is equal
to zero it means the node is to be inserted at begin so we
called insertAtBegin() method else we run a while loop until
the current_node is not equal to None or (position+1) is not equal to the index
we have to at the one position back to insert at a given position to make the
linking of nodes and in each iteration, we increment the position by 1 and make
the current_node next of it. When the loop breaks and if current_node is not
equal to None we insert new_node at after to
the current_node. If current_node is equal to None it means that the index is
not present in the list and we print “Index not present”.

Indexing starts from 0.
def insertAtIndex(self, data, index):
 new_node = Node(data)
 current_node = self.head
 position = 0
 if position == index:
 self.insertAtBegin(data)
 else:
 while(current_node != None and position+1 != index):
 position = position+1
 current_node = current_node.next

 if current_node != None:

 new_node.next = current_node.next
 current_node.next = new_node
 else:
 print("Index not present")

Insertion in Linked List at End
This method inserts the node at the end of the linked list. In this method, we
create a new_node with the given data and check if the head is an empty node
or not if the head is empty then we make
the new_node as head and return else we make a current_node equal to the

5 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

head traverse to the last node of the linked list and when we get None after
the current_node the while loop breaks and insert the new_node in the next
of current_node which is the last node of linked list.

def inserAtEnd(self, data):
 new_node = Node(data)
 if self.head is None:
 self.head = new_node
 return

 current_node = self.head
 while(current_node.next):
 current_node = current_node.next

 current_node.next = new_node

Update the Node of a Linked List
This code defines a method called updateNode in a linked list class. It is used
to update the value of a node at a given position in the linked list.

Update node of a linked list
at given position
def updateNode(self, val, index):
 current_node = self.head
 position = 0
 if position == index:
 current_node.data = val
 else:
 while(current_node != None and position != index):
 position = position+1
 current_node = current_node.next

 if current_node != None:
 current_node.data = val
 else:
 print("Index not present")

6 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

Delete Node in a Linked List

Remove First Node from Linked List
This method removes the first node of the linked list simply by making the
second node head of the linked list.

def remove_first_node(self):
 if(self.head == None):
 return

 self.head = self.head.next

Remove Last Node from Linked List
In this method, we will delete the last node. First, we traverse to the second
last node using the while loop, and then we make the next of that
node None and last node will be removed.

def remove_last_node(self):

 if self.head is None:
 return

 current_node = self.head
 while(current_node.next.next):
 current_node = current_node.next

 current_node.next = None

Delete a Linked List Node at a given Position
In this method, we will remove the node at the given index, this method is
similar to the insert_at_inded() method. In this method, if the head is None we
simply return else we initialize
a current_node with self.head and position with 0. If the position is equal to
the index we called the remove_first_node() method else we traverse to the
one node before that we want to remove using the while loop. After that when
we out of the while loop we check that current_node is equal to None if not

7 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

then we make the next of current_node equal to the next of node that we want
to remove else we print the message “Index not
present” because current_node is equal to None.

Method to remove at given index
def remove_at_index(self, index):
 if self.head == None:
 return

 current_node = self.head
 position = 0
 if position == index:
 self.remove_first_node()
 else:
 while(current_node != None and position+1 != index):
 position = position+1
 current_node = current_node.next

 if current_node != None:
 current_node.next = current_node.next.next
 else:
 print("Index not present")

Delete a Linked List Node of a given Data
This method removes the node with the given data from the linked list. In this
method, firstly we made a current_node equal to the head and run a while
loop to traverse the linked list. This while loop breaks
when current_node becomes None or the data next to the current node is
equal to the data given in the argument. Now, After coming out of the loop if
the current_node is equal to None it means that the node is not present in the
data and we just return, and if the data next to the current_node is equal to
the data given then we remove that node by making next of that
removed_node to the next of current_node. And this is implemented using the
if else condition.

8 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

def remove_node(self, data):
 current_node = self.head

 while(current_node != None and current_node.next.data != data):
 current_node = current_node.next

 if current_node == None:
 return
 else:
 current_node.next = current_node.next.next

Linked List Traversal in Python
This method traverses the linked list and prints the data of each node. In this
method, we made a current_node equal to the head and iterate through the
linked list using a while loop until the current_node become None and print
the data of current_node in each iteration and make the current_node next to
it.

def printLL(self):
 current_node = self.head
 while(current_node):
 print(current_node.data)
 current_node = current_node.next

Get Length of a Linked List in Python
This method returns the size of the linked list. In this method, we have
initialized a counter ‘size’ with 0, and then if the head is not equal to None we
traverse the linked list using a while loop and increment the size with 1 in
each iteration and return the size when current_node becomes None else we
return 0.

def sizeOfLL(self):
 size = 0
 if(self.head):
 current_node = self.head
 while(current_node):
 size = size+1

9 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

 current_node = current_node.next
 return size
 else:
 return 0

Example of the Linked list in Python
In this example, After defining the Node and LinkedList class we have created
a linked list named “llist” using the linked list class and then insert four nodes
with character data ‘a’, ‘b’, ‘c’, ‘d’ and ‘g’ in the linked list then we print the
linked list using printLL() method linked list class after that we have removed
some nodes using remove methods and then print the linked list again and we
can see in the output that node is deleted successfully. After that, we also
print the size of the linked list.
Python3
Create a Node class to create a node
class Node:
 def __init__(self, data):
 self.data = data
 self.next = None

Create a LinkedList class
 class LinkedList:
 def __init__(self):
 self.head = None

 # Method to add a node at begin of LL
 def insertAtBegin(self, data):
 new_node = Node(data)
 if self.head is None:
 self.head = new_node
 return
 else:
 new_node.next = self.head
 self.head = new_node

 # Method to add a node at any index
 # Indexing starts from 0.
 def insertAtIndex(self, data, index):
 new_node = Node(data)
 current_node = self.head

10 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

 position = 0
 if position == index:
 self.insertAtBegin(data)
 else:
 while(current_node != None and position+1 != index):
 position = position+1
 current_node = current_node.next

 if current_node != None:
 new_node.next = current_node.next
 current_node.next = new_node
 else:
 print("Index not present")

 # Method to add a node at the end of LL

 def insertAtEnd(self, data):
 new_node = Node(data)
 if self.head is None:
 self.head = new_node
 return

 current_node = self.head
 while(current_node.next):
 current_node = current_node.next

 current_node.next = new_node

 # Update node of a linked list
 # at given position
 def updateNode(self, val, index):
 current_node = self.head
 position = 0
 if position == index:
 current_node.data = val
 else:
 while(current_node != None and position != index):
 position = position+1
 current_node = current_node.next

 if current_node != None:
 current_node.data = val
 else:
 print("Index not present")

 # Method to remove first node of linked list

11 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

 def remove_first_node(self):
 if(self.head == None):
 return

 self.head = self.head.next

 # Method to remove last node of linked list
 def remove_last_node(self):

 if self.head is None:
 return

 current_node = self.head
 while(current_node.next.next):
 current_node = current_node.next

 current_node.next = None

 # Method to remove at given index
 def remove_at_index(self, index):
 if self.head == None:
 return

 current_node = self.head
 position = 0
 if position == index:
 self.remove_first_node()
 else:
 while(current_node != None and position+1 != index):
 position = position+1
 current_node = current_node.next

 if current_node != None:
 current_node.next = current_node.next.next
 else:
 print("Index not present")

 # Method to remove a node from linked list
 def remove_node(self, data):
 current_node = self.head

 while(current_node != None and current_node.next.data != data):
 current_node = current_node.next

12 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

 if current_node == None:
 return
 else:
 current_node.next = current_node.next.next

 # Print the size of linked list
 def sizeOfLL(self):
 size = 0
 if(self.head):
 current_node = self.head
 while(current_node):
 size = size+1
 current_node = current_node.next
 return size
 else:
 return 0

 # print method for the linked list
 def printLL(self):
 current_node = self.head
 while(current_node):
 print(current_node.data)
 current_node = current_node.next

create a new linked list
llist = LinkedList()

add nodes to the linked list
llist.insertAtEnd('a')
llist.insertAtEnd('b')
llist.insertAtBegin('c')
llist.insertAtEnd('d')
llist.insertAtIndex('g', 2)

print the linked list
print("Node Data")
llist.printLL()

remove a nodes from the linked list
print("\nRemove First Node")
llist.remove_first_node()
print("Remove Last Node")
llist.remove_last_node()
print("Remove Node at Index 1")
llist.remove_at_index(1)

13 | P a g e

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 3 - 2 0 2 4

print the linked list again
print("\nLinked list after removing a node:")
llist.printLL()

print("\nUpdate node Value")
llist.updateNode('z', 0)
llist.printLL()

print("\nSize of linked list :", end=" ")
print(llist.sizeOfLL())

Output:
Node Data

c

a

g

b

d

Remove First Node

Remove Last Node

Remove Node at Index 1

Linked list after removing a node:

a

b

Update node Value

z

b

Size of linked list : 2

