Problem 3

A commercial airliner with four jet engines, each producing 90 kN of forward thrust, is in a steady, level cruise when engine number 3 suddenly fails. Determine and locate the resultant of the three remaining engine thrust vectors. Treat this as a two dimensional problem.

Solution

$$
\begin{aligned}
R & =3(90)=270 \mathrm{kN}(\leftarrow) \\
+2 M_{0} & =12(90)=1080 \mathrm{kN} \cdot \mathrm{~m} \\
d & =\frac{M_{0}}{R}=\frac{1080}{270} \\
& =4 \mathrm{~m}
\end{aligned}
$$

Problem 4

If the resultant of the two forces and couple M passes through point O, determine M.

Solution

$$
\begin{gathered}
M_{0}=0,50 \\
r_{+} M-400\left(0.150 \cos 30^{\circ}\right)-320(0.300)=0 \\
M=148.0 \mathrm{~N} \cdot \mathrm{~m}
\end{gathered}
$$

Problem 5

The flanged steel cantilever beam with riveted bracket is subjected to the couple and two forces shown, and their effect on the design of the attachment at A must be determined. Replace the two forces and couple by an equivalent couple . M and resultant force R at A .

Solution

$$
\begin{aligned}
R_{x} & =\Sigma F_{x}=2 \cos 70^{\circ}+1.2\left(\frac{4}{5}\right)=1.644 \mathrm{kN} \\
& R_{y}=\Sigma F_{y}=2 \sin 70^{\circ}-1.2\left(\frac{3}{5}\right)=1.159 \mathrm{kN} \\
\sigma_{+} M_{A}= & -2 \cos 70^{\circ}(0.15)+2 \sin 70^{\circ}(1.5+0.5) \\
& +1.2\left(\frac{4}{5}\right)(0.15)-1.2\left(\frac{3}{5}\right)(1.5)-0.5 \\
= & 2.22 \mathrm{kN} \cdot \mathrm{~m} \quad C C W
\end{aligned}
$$

Problem 6

The gear and attached V-belt pulley are turning counterclockwise and are subjected to the tooth load of 1600 N and the $800-\mathrm{N}$ and $450-\mathrm{N}$ tens ions in the V-belt. Represent the action of these three forces by a resultant force R at O and a couple of magnitude M. Is the unit slowing down or speeding up?

Solution

$$
\begin{aligned}
R_{x}=\Sigma F_{x}=(800 & +450) \cos 15^{\circ}-1600 \sin \left(30^{\circ}-20^{\circ}\right) \\
= & 1207-278=929.6 \mathrm{~N} \\
R_{y}=\Sigma F_{y} & =1600 \cos 10^{\circ} \\
& +(800-450) \sin 15^{\circ} \\
= & 1576+90.6=1666 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
\left.M=\Sigma M_{0}+\right) ; M & =1600 \cos 20^{\circ}(0.150)+(450-800) 0.280 \\
& =225.5-98.0=127.5 \mathrm{~N} \cdot \mathrm{~m} \mathrm{cW}
\end{aligned}
$$

Problem 7

Two integral pulleys are subjected to the belt tensions shown. If the resultant R of these forces passes through the center O, determine T and the magnitude of R and the counterclockwise angle θ it makes with the x -axis.

Solution

$$
\begin{aligned}
&+2 M_{0}=0: 200(0.2)-150(0.2)-160(0.1)+(0.1) T=0 \\
& T=60 \mathrm{~N} \\
& R_{x}=\sum F_{x}=200+150-(160+60) \cos 30^{\circ}=159.5 \mathrm{~N} \\
& R_{y}=\sum F_{y}=(160+30) \sin 30^{\circ}=110 \mathrm{~N} \\
& R= \sqrt{R_{x}^{2}+R_{y}^{2}}=\frac{193.7 \mathrm{~N}}{\theta}=\tan ^{-1}\left(R_{y} / R_{x}\right)=34.6^{\circ}
\end{aligned}
$$

