.Combustion engineering

Republic of Iraq

Ministry of Higher Education

and Scientific Research

Al-Mustaqbal University

Chemical Engineering and Petroleum Industries Department

Subject: Combustion engineering

3nd Class

FLAME SPEED CORRELATIONS FOR SELECTED FUELS

Metghalchi and Keek experimentally determined laminar flame for various fuel-air mixtures over a range of temperatures and pressures typical of conditions associated with reciprocating internal combustion engines and gas-turbine combustors.

$$S_L = S_{L, \text{ref}} \left(\frac{T_u}{T_{u, \text{ref}}}\right)^{\gamma} \left(\frac{P}{P_{\text{ref}}}\right)^{\beta} (1 - 2.1 Y_{\text{dil}}),$$

For T_u > 350 K . The subscript ref refers to reference conditions defined by $T_{u.ref} = 289K$ and P =1 atm .

$$S_{L,ref} = B_M + B_2 (\Phi - \Phi_M)^2$$
(2)

Where the constants B_M , B_2 , and Φ_M depend on fuel type and are given in table 1 The temperature and pressure exponents, γ and β , are functions of the equivalence ratio, expressed as

$$\gamma = 2.18 - 0.8(\Phi - 1)$$

$$\beta = -0.16 + 0.22(\Phi - 1).$$

The term d_{il} is the mass fraction of diluents present in the air-fuel mixture. Recirculation of exhaust or flue gases is a common technique used to control oxides of nitrogen in many combustion systems and in internal combustion engines, residual combustion products mix with the incoming charge under most operating conditions.

Fuel	Φ_M	B_M cm/s	B ₂ cm/s
Methanol	1.11	36.92	-140.51
Propane	1.08	34.22	-138.65
Isooctane	1.13	26.32	-84.72
RMFD-303	1.13	27.58	-78.34

Table 1 values f	for	B_M ,	B ₂ ,	and	Φ_M
------------------	-----	---------	------------------	-----	----------

.Combustion engineering

Example

Compare the flame speed of gasoline-air mixture with $\Phi = 0.8$ for the following three cases:

- 1. At reference conditions of T = 298 K and P = 1 atom.
- 2. At conditions typical of a spark-ignition engine operating at wide-open throttle: T = 685 K and P = 13.38 atom.

3. Same as condition 2 above, but with 15 percent (by mass) exhaust-gas recirculation .

Solution We will employ the correlation of Metghalchi and Keck, equation (1),. The flame speed at 298 K and 1 atom is given by:

$$S_{L_{u} \text{ ref}} = B_M + B_2 (\Phi - \Phi_M)^2$$

where, from Table 8.3,

 $B_M = 27.58 \text{ cm/s},$ $B_2 = -78.38 \text{ cm/s},$ $\phi_M = 1.13.$

Thus,

$$S_{L, \text{ref}} = 27.58 - 78.34(0.8 - 1.13)^2,$$

 $S_{L, \text{ref}} = 19.05 \text{ cm/s}$

To find the flame speed at temperatures and pressures other than the reference state, we employ equation below

.Combustion engineering

Lecturer: Dr.Anwar Qasim

$$S_L(T_u, P) = S_{L, \text{ref}} \left(\frac{T_u}{T_{u, \text{ref}}}\right)^{\gamma} \left(\frac{P}{P_{\text{ref}}}\right)^{\beta}$$

where

$$\begin{aligned} \gamma &= 2.18 - 0.8(\Phi - 1) \\ &= 2.34 \\ \beta &= -0.16 + 0.22(\Phi - 1) \\ &= -0.204. \end{aligned}$$

Thus,

$$S_L(685 \text{ K}, 18.38 \text{ atm}) = 19.05 \left(\frac{685}{298}\right)^{2.34} \left(\frac{18.38}{1}\right)^{-0.20}$$

= 19.05(7.012)(0.552)

SL = 73.8 cm/s

With dilution by exhaust gas recirculation the flame speed above is reduced by the factor $(1\mathchar`-2.1Y_{dil}\,)$

 $SL(685K, 18.38atm) = 73.8 \quad (1-2.1(0.15))$

SL=50.6 cm/s