Republic of Iraq
Ministry of Higher Education
and Scientific Research
Al-Mustaqbal University
Chemical Engineering and Petroleum Industries Department

Subject: Combustion engineering

$3^{\text {nd }}$ Class

FLAME SPEED CORRELATIONS FOR SELECTED FUELS

Metghalchi and Keek experimentally determined laminar flame for various fuel-air mixtures over a range of temperatures and pressures typical of conditions associated with reciprocating internal combustion engines and gas-turbine combustors.

$$
S_{L}=S_{L, \text { ref }}\left(\frac{T_{u}}{T_{u, \text { ref }}}\right)^{\gamma}\left(\frac{P}{P_{\text {ref }}}\right)^{\beta}\left(1-2.1 Y_{\mathrm{dil}}\right),
$$

For $T_{u}>350 \mathrm{~K}$. The subscript ref refers to reference conditions defined by $T_{u . r e f}=289 \mathrm{~K}$ and $\mathrm{P}=1 \mathrm{~atm}$.

$$
\begin{equation*}
\mathrm{S}_{\mathrm{L}, \mathrm{ref}}=B_{M}+B_{2}\left(\Phi-\Phi_{M}\right)^{2} \tag{2}
\end{equation*}
$$

Where the constants B_{M}, B_{2}, and Φ_{M} depend on fuel type and are given in table 1 The temperature and pressure exponents, γ and β, are functions of the equivalence ratio, expressed as

$$
\gamma=2.18-0.8(\Phi-1)
$$

$$
\beta=-0.16+0.22(\Phi-1)
$$

The term d_{il} is the mass fraction of diluents present in the air-fuel mixture. Recirculation of exhaust or flue gases is a common technique used to control oxides of nitrogen in many combustion systems and in internal combustion engines, residual combustion products mix with the incoming charge under most operating conditions.

Table 1 values for B_{M}, B_{2}, and Φ_{M}

Fuel	Φ_{M}	$B_{M} \mathrm{~cm} / \mathrm{s}$	$B_{2} \mathrm{~cm} / \mathrm{s}$
Methanol	1.11	36.92	-140.51
Propane	1.08	34.22	-138.65
Isooctane	1.13	26.32	-84.72
RMFD-303	1.13	27.58	-78.34

Example

Compare the flame speed of gasoline-air mixture with $\Phi=0.8$ for the following three cases:

1. At reference conditions of $T=298 \mathrm{~K}$ and $P=1$ atom.
2. At conditions typical of a spark-ignition engine operating at wide-open throttle: $T=685$ K and $P=13.38$ atom.
3. Same as condition 2 above, but with 15 percent (by mass) exhaust-gas recirculation .

Solution We will employ the correlation of Metghalchi and Keck, equation (1),. The flame speed at 298 K and 1 atom is given by:

$$
S_{L, \mathrm{rff}}=B_{M}+B_{2}\left(\Phi-\Phi_{M}\right)^{2}
$$

where, from Table 8.3,

$$
\begin{aligned}
B_{M} & =27.58 \mathrm{~cm} / \mathrm{s}, \\
B_{2} & =-78.38 \mathrm{~cm} / \mathrm{s}, \\
\phi_{M} & =1.13 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& S_{L, \text { ref }}=27.58-78.34(0.8-1.13)^{2}, \\
& S_{L, \text { ref }}=19.05 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

To find the flame speed at temperatures and pressures other than the reference state, we employ equation below

$$
S_{L}\left(T_{u}, P\right)=S_{L, \text { ref }}\left(\frac{T_{u}}{T_{u, \text { ref }}}\right)^{\gamma}\left(\frac{P}{P_{\text {ref }}}\right)^{\beta}
$$

where

$$
\begin{aligned}
\gamma & =2.18-0.8(\Phi-1) \\
& =2.34 \\
\beta & =-0.16+0.22(\Phi-1) \\
& =-0.204
\end{aligned}
$$

Thus,

$$
S_{L}(685 \mathrm{~K}, 18.38 \mathrm{~atm})=19.05\left(\frac{685}{298}\right)^{2.34}\left(\frac{18.38}{1}\right)^{-0.204}
$$

$=19.05(7.012)(0.552)$
$S L=73.8 \mathrm{~cm} / \mathrm{s}$
With dilution by exhaust gas recirculation the flame speed above is reduced by the factor (1-2.1 $\mathrm{Y}_{\mathrm{dil}}$)
$S L(685 \mathrm{~K}, 18.38 \mathrm{~atm})=73.8 \quad(1-2.1(0.15))$
$S L=50.6 \mathrm{~cm} / \mathrm{s}$

