Example1: Design of single footing with axial load

A square single footing is required to resist 1000KN axial dead load and 350 KN live load imposed from a square column of 400 mm. The allowable bearing pressure 200KN/m2. $f_{cu} = 35 Mpa$, $f_y = 460 Mpa$

Solution:

Determination of soil density

Assume $v_t = 1m3$, $n = \frac{v_v}{v_t}$, $0.35 = \frac{v_v}{1m^3}$, $v_s = 0.65m^3$ $G_s = \frac{w_s}{v_s \gamma_w}$, $2.6 = \frac{w_s}{0.65 \times 10 KN/m3}$, $W_s = 16.9KN/m3$,

assume $\omega = 3.5\% = 0.035$

$$\gamma_{sat} = \frac{w_s + w_w}{v_t} = \frac{w_s + v_v + \gamma_w}{v_t} = \frac{16.9 + 0.35 + 10}{1} = 20.4 \ KN/m3$$

 $\tilde{\gamma} = \gamma_{sat} - \gamma_w = 20.4 - 10 = 10.4 KN/m3$

$$\gamma_{wet} = \frac{w_s + w_w}{v_t} = \frac{w_s + w_s * \omega}{v_t} = \frac{w_s(1+\omega)}{v_t} = \frac{16.9(1+0.035)}{1m3} = 17.5KN/m^3$$

Assume square footing of dimensions (B*L)

Terzaghi's Equation for square footing

$$\begin{array}{l} q_{U}=1.3CN_{c}+qN_{q}+0.4\ddot{\gamma}BN_{q}\\ \\ \text{For } \emptyset=20^{\circ}, \qquad N_{c}=17.69 \ , \ N_{q}=7.44 \ , \ N_{\gamma}=3.64\\ \\ \text{Since the water table is within the lower edge of the footing, therefore}\\ q=2m*17.5KN/m3=35 \ \text{KN/m2 and } d=0\\ \\ \ddot{\gamma}=\dot{\gamma}+\frac{d}{B}(\gamma-\gamma')=\dot{\gamma}=10.4KN/m3\\ \\ q_{U}=1.3*20*17.69+35*7.44+0.4*10.4B*3.64=720+15.1B\\ \\ q_{all}=\frac{720+15.1B}{3}=240+5B\\ \\ \text{Assume footing thickness}=0.6m\\ \\ \text{Weight of footing } 0.6*\frac{24KN}{m3}*BL=14.4B^{2}\\ \\ \text{Ultimate Column pressure + footing weight, } q_{o}=\frac{1000KN}{B^{2}}, \text{ now equate the two pressures}\\ \\ \frac{1350KN+14.4B^{2}}{B^{2}}=240+5B\\ \\ 1350=225.6B^{2}+5B^{3}\\ \\ 1350=240B^{2}+5B^{3} \ \text{ from it B=L}\cong2.4m,\\ \\ \text{For more checking } q_{o}=\frac{1350+2.4^{2}*0.6*24}{2.4^{2}}=248.775KN/m2\approx 250KN/m2 \ ,\\ \\ q_{all}=240+5B=240+5*2.32=251.6\ KN/m2 \ \text{OK} \end{array}$$

After the allowable bearing capacity has been checked, now we have to check the total settlement as follows.

Soil pressure estimations

The overburden pressure to the center of the layer is

$$P_{o} = \gamma_{wet}h_{1} + \gamma h_{1} = 17.5 * 2m + 10.4 * 3.5 = 71.4KN/m2$$

$$P_{1} = P_{o} + \frac{q_{o}BL}{(B+Z)(L+Z)} = 71.4 + \frac{250.8 * 2.32 * 2.32}{(2.32+3.5)(2.32+3.5)} = \frac{71.4KN}{m2} + \frac{39.8KN}{m2}$$

$$= 111.25KN/m2$$

 $\delta p = p_1 - p_o = 111.25 - 71.4 = 39.8 \approx 40 KN/m2$

The total settlement (S):

Using the e-p curve to find the corresponding Void ratios as follows:-

For
$$P_o = 71.4Kn/m2$$
, $e_o = 0.6518$
For $P_1 = 111.25KN/m2$, $e_1 = 0.6507$
 $S = -\frac{\delta e}{1 + e_o} * H = -\frac{\delta e}{1 + e_o} * H$
 $S = -\frac{0.6507 - 0.6518}{1 + 0.6518} * 7m = 0.00466 m = 4.66 mm \cong 5 mm < 25 mm$ OK

Results summary

Square footing with total settlement <25mm

Reinforced concrete design

Summary of the available values Dead load = 1000 KN Live load = 350 KN B = L = 2.3 m $f_{cu} = 35 Mpa$, $f_y = 460 Mpa$

Use the ultimate Loads

Determination H & d

 $N_U = 1.4 L.L + 1.6 D.L = 1.6 * 1000 + 1.4 * 350 = 1960KN$

 $V_U = \langle of (0.8 \sqrt{f_{cu}} and 5 N/mm2) \rangle$

$$0.8\sqrt{f_{cu}} = 0.8\sqrt{35} = 4.7 \, N/mm2$$

Perimeter of the column = 4 *400mm=1600mm

Shear stress at the face of the column = $\frac{N_u}{perimeter*d}$

Take $\frac{V_U}{2} = \frac{N_u}{perimeter*d}$ $\frac{4.7}{2} = \frac{1960KN*1000}{1600d}$, d = 521 mm

Assume to use blinding cover of concrete = 50 mm

Assume to use bar of Ø20mm

 $H = 521mm + 50mm + 20mm = 591mm \cong 600mm$

Net d = 600mm – 50 mm - 20mm = 530 mm

Reinforcement design

Z = 0.83* d = 0.83 * 530 = 439.9 mm

$$A_s = \frac{M}{0.95f_y Z} = \frac{300 * 10^6}{0.95 * 460 * 439.9} = 1,560mm2$$

No. of bars = $\frac{1560mm2}{\frac{\pi 20^2}{4}} = 4.96 \cong 5$, use 5\overline{20}

Minimum reinforcement

$$A_{s \min} = \frac{0.13Lh}{100} = \frac{0.13*2400*600}{100} = 1,872mm,$$

No. of bars $=\frac{1872mm2}{\frac{\pi 20^2}{4}} = 5.96 \cong 6,$ use 6\overline{020}
Minimum spacing $=\frac{2400mm}{6} = 800mm > 750mm$

use 750mm spacing

Check shear at 1d from column face

$$V = q_0 LC = 250 * 2.4 * 0.47 = 282 KN$$

Shear stress $v = \frac{V}{Ld} = \frac{282KN * 1000}{2400 * 530} = 0.221KN/m2$

Now we have to check for shear

From table 3.8 (BS8110)

$$\frac{100A_S}{Ld} = \frac{100*1872}{2400*530} = 0.147$$
$$\frac{400}{d} = \frac{400}{530} < 1 \text{ take it } 1$$

Thus:

$$V_C = [0.79 * (0.147)^{\frac{1}{3}} * 1 * (\frac{35}{25})^{\frac{1}{3}}]/1.25 = 0.373$$

OK.

Check punching shear at 1.5d from column face

Critical perimeter for punching shear (U)= Column perimeter + 8 * 1.5d U = 4 * 400 + 8 * 1.5 * 530 = 7960mmHatched $A_P = BL - (0.4 + 3d)^2$ $= 2.4^2 - (0.4 + 3 * 0.53)^2 = 1.8m2$ Punching shear force $V_P = q_0 A_p = \frac{250KN}{m2} *$ 1.8m2 = 450 KNPunching shear stress $v_P = \frac{V_P}{4(3d+0.4)d} = \frac{450KN * 1000}{4(3 * 530 + 400)530} = 0.1066 N/mm2$ Since $v_P < V_C$ $0.1066 N/mm^2 < 0.373$ OK Anchorage length = 40*20mm = 800 mm

Therefore no need for bends.

