Example1: Design of single footing with axial load

A square single footing is required to resist 1000 KN axial dead load and 350 KN live load imposed from a square column of 400 mm . The allowable bearing pressure $200 \mathrm{KN} / \mathrm{m} 2$.
$f_{c u}=35 \mathrm{Mpa}, f_{y}=460 \mathrm{Mpa}$

Solution:

Determination of soil density

Assume $v_{t}=1 m 3, \quad n=\frac{v_{v}}{v_{t}}, \quad 0.35=\frac{v_{v}}{1 m^{3}}, \quad v_{s}=0.65 m^{3}$
$G_{s}=\frac{w_{s}}{v_{s} \gamma_{w}}, \quad 2.6=\frac{w_{s}}{0.65 * 10 K N / m 3} \quad, \quad W_{s}=16.9 K N / m 3$,
assume $\omega=3.5 \%=0.035$
$\gamma_{s a t}=\frac{w_{s}+w_{w}}{v_{t}}=\frac{w_{s}+v_{v^{*}} \gamma_{w}}{v_{t}}=\frac{16.9+0.35 * 10}{1}=20.4 \mathrm{KN} / \mathrm{m} 3$
$\dot{\gamma}=\gamma_{s a t}-\gamma_{w}=20.4-10=10.4 K N / m 3$
$\gamma_{w e t}=\frac{w_{s}+w_{w}}{v_{t}}=\frac{w_{s}+w_{s} * \omega}{v_{t}}=\frac{w_{s}(1+\omega)}{v_{t}}=\frac{16.9(1+0.035)}{1 m 3}=17.5 \mathrm{KN} / \mathrm{m}^{3}$
Assume square footing of dimensions ($\mathrm{B}^{*} \mathrm{~L}$)
Terzaghi's Equation for square footing
$q_{U}=1.3 C N_{C}+q N_{q}+0.4 \ddot{Y} B N_{q}$
For $\varnothing=20^{\circ}, \quad N_{C}=17.69, N_{q}=7.44, N_{\gamma}=3.64$
Since the water table is within the lower edge of the footing, therefore
$q=2 m * 17.5 \mathrm{KN} / \mathrm{m} 3=35 \mathrm{KN} / \mathrm{m} 2$ and $\mathrm{d}=0$
$\ddot{\gamma}=\dot{\gamma}+\frac{d}{B}(\gamma-\gamma)=\dot{\gamma}=10.4 \mathrm{KN} / \mathrm{m} 3$
$q_{U}=1.3 * 20 * 17.69+35 * 7.44+0.4 * 10.4 B * 3.64=720+15.1 B$
$q_{\text {all }}=\frac{720+15.1 B}{3}=240+5 B$
Assume footing thickness $=0.6 \mathrm{~m}$
Weight of footing $0.6 * \frac{24 K N}{m 3} * B L=14.4 B^{2}$
Ultimate Column pressure + footing weight, $q_{o}=\frac{1000 \mathrm{KN}}{B^{2}}$, now equate the two pressures
$\frac{1350 K N+14.4 B^{2}}{B^{2}}=240+5 B$
$1350=225.6 B^{2}+5 B^{3}$
$1350=240 B^{2}+5 B^{3}$ from it $\mathrm{B}=\mathrm{L} \cong 2.4 \mathrm{~m}$,
For more checking $q_{o}=\frac{1350+2.4^{2} * 0.6 * 24}{2.4^{2}}=248.775 \mathrm{KN} / \mathrm{m} 2 \approx 250 \mathrm{KN} / \mathrm{m} 2$,

$$
q_{\text {all }}=240+5 B=240+5 * 2.32=251.6 \mathrm{KN} / \mathrm{m} 2 \quad \text { OK }
$$

After the allowable bearing capacity has been checked, now we have to check the total settlement as follows.

Soil pressure estimations
The overburden pressure to the center of the layer is
$P_{o}=\gamma_{w e t} h_{1}+\dot{\gamma} h_{1}=17.5 * 2 m+10.4 * 3.5=71.4 \mathrm{KN} / \mathrm{m} 2$
$P_{1}=P_{o}+\frac{q_{o} B L}{(B+Z)(L+Z)}=71.4+\frac{250.8 * 2.32 * 2.32}{(2.32+3.5)(2.32+3.5)}=\frac{71.4 \mathrm{KN}}{m 2}+\frac{39.8 \mathrm{KN}}{m 2}$ $=111.25 \mathrm{KN} / \mathrm{m} 2$
$\delta p=p_{1}-p_{o}=111.25-71.4=39.8 \approx 40 \mathrm{KN} / \mathrm{m} 2$

The total settlement (S):
Using the e-p curve to find the corresponding Void ratios as follows:-
For $P_{o}=71.4 \mathrm{Kn} / \mathrm{m} 2, \quad e_{o}=0.6518$
For $P_{1}=111.25 K N / m 2, e_{1}=0.6507$
$S=-\frac{\delta e}{1+e_{o}} * H=-\frac{\delta e}{1+e_{o}} * H$
$S=-\frac{0.6507-0.6518}{1+0.6518} * 7 \mathrm{~m}=0.00466 \mathrm{~m}=4.66 \mathrm{~mm} \cong 5 \mathrm{~mm}<25 \mathrm{~mm}$ OK
Results summary

Square footing with total settlement $<25 \mathrm{~mm}$
Reinforced concrete design
Summary of the available values
Dead load = 1000 KN
Live load $=350 \mathrm{KN}$
$\mathrm{B}=\mathrm{L}=2.3 \mathrm{~m}$
$f_{c u}=35 \mathrm{Mpa}, f_{y}=460 \mathrm{Mpa}$

Determination H \& d

Reinforcement
Use the ultimate Loads
$N_{U}=1.4 L . L+1.6 D . L=1.6 * 1000+1.4 * 350=1960 K N$
$V_{U}=<$ of $\left(0.8 \sqrt{f_{c u}}\right.$ and $\left.5 \mathrm{~N} / \mathrm{mm} 2\right)$
$0.8 \sqrt{f_{c u}}=0.8 \sqrt{35}=4.7 \mathrm{~N} / \mathrm{mm} 2$
Perimeter of the column $=4 * 400 \mathrm{~mm}=1600 \mathrm{~mm}$
Shear stress at the face of the column $=\frac{N_{u}}{\text { perimeter } * d}$
Take $\frac{V_{U}}{2}=\frac{N_{u}}{\text { perimeter*d }}$
$\frac{4.7}{2}=\frac{1960 K N * 1000}{1600 d}, \quad d=521 \mathrm{~mm}$
Assume to use blinding cover of concrete $=50 \mathrm{~mm}$
Assume to use bar of $\emptyset 20 \mathrm{~mm}$
$H=521 \mathrm{~mm}+50 \mathrm{~mm}+20 \mathrm{~mm}=591 \mathrm{~mm} \cong 600 \mathrm{~mm}$
Net $\mathrm{d}=600 \mathrm{~mm}-50 \mathrm{~mm}-20 \mathrm{~mm}=530 \mathrm{~mm}$
Reinforcement design

Max moment at the face of the column

$$
\begin{aligned}
& \begin{aligned}
M_{\max }=q_{o} L & \left(\frac{B-h c}{2}\right) *\left(\frac{B-h c}{2}\right) / 2 \\
& =250 * 2.4\left(\frac{2.4-0.4}{2}\right)^{2} / 2 \\
& =300 \mathrm{KN.m}
\end{aligned} \\
& \begin{aligned}
K=\frac{M}{f_{c u} L d^{2}} & =\frac{300 * 10^{6} \mathrm{N.mm}}{35 * 240 * 530^{2}}=0.127 \\
& <0.156 \text { compression steel }
\end{aligned} \\
& \begin{array}{l}
\frac{Z}{d}=0.5+\sqrt{0.25-\frac{0.127}{0.9}=0.83 \leq 0.95}
\end{array} \\
& \text { OK }
\end{aligned}
$$

$Z=0.83 * d=0.83 * 530=439.9 \mathrm{~mm}$

$$
A_{s}=\frac{M}{0.95 f_{y} Z}=\frac{300 * 10^{6}}{0.95 * 460 * 439.9}=1,560 \mathrm{~mm} 2
$$

No. of bars $=\frac{1560 \mathrm{~mm} 2}{\frac{\pi 20^{2}}{4}}=4.96 \cong 5, \quad$ use $5 \emptyset 20$
Minimum reinforcement
$A_{\text {s min }}=\frac{0.13 L h}{100}=\frac{0.13 * 2400 * 600}{100}=1,872 \mathrm{~mm}$,
No. of bars $=\frac{1872 \mathrm{~mm} 2}{\frac{\pi 20^{2}}{4}}=5.96 \cong 6, \quad$ use $6 \not \subset 20$
Minimum spacing $=\frac{2400 \mathrm{~mm}}{6}=800 \mathrm{~mm}>750 \mathrm{~mm} \quad$ use 750 mm spacing
Check shear at 1d from column face

$$
V=q_{o} L C=250 * 2.4 * 0.47=282 K N
$$

Shear stress $v=\frac{V}{L d}=\frac{282 K N * 1000}{2400 * 530}=0.221 K N / \mathrm{m} 2$
Now we have to check for shear
From table 3.8 (BS8110)
$\frac{100 A_{S}}{L d}=\frac{100 * 1872}{2400 * 530}=0.147$
$\frac{400}{d}=\frac{400}{530}<1$ take it 1
Thus:

$$
V_{C}=\left[0.79 *(0.147)^{\frac{1}{3}} * 1 *\left(\frac{35}{25}\right)^{\frac{1}{3}}\right] / 1.25=0.373
$$

OK.

Check punching shear at 1.5d from column face

Critical perimeter for punching shear
$(\mathrm{U})=$ Column perimeter $+8 * 1.5 d$

$$
U=4 * 400+8 * 1.5 * 530=7960 \mathrm{~mm}
$$

Hatched $A_{P}=B L-(0.4+3 d)^{2}$

$$
=2.4^{2}-(0.4+3 * 0.53)^{2}=1.8 m 2
$$

Punching shear force $V_{P}=q_{o} A_{p}=\frac{250 K N}{m 2} *$
$1.8 m 2=450 K N$
Punching shear stress $v_{P}=$
$\frac{V_{P}}{4(3 d+0.4) d}=\frac{450 K N * 1000}{4(3 * 530+400) 530}=0.1066 \mathrm{~N} / \mathrm{mm} 2$
Since $v_{P}<V_{C}$
$0.1066 \mathrm{~N} / \mathrm{mm}^{2}<0.373$ OK
Anchorage length $=40^{*} 20 \mathrm{~mm}=800 \mathrm{~mm}$

Therefore no need for bends.

